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bound. The addressed metrics are evaluated via their expected values. As an application,

we show how the distributed optimization algorithm can be used to perform collabora-

tive system identification and provide numerical experiments under the randomized and

broadcast gossip protocols.

Second, we generalize the asymptotic consensus problem to convex metric spaces.

Under minimal connectivity assumptions, we show that if at each iteration an agent up-

dates its state by choosing a point from a particular subset of the generalized convex hull

generated by the agents current state and the states of its neighbors, then agreement is

achieved asymptotically. In addition, we give bounds on thedistance between the consen-

sus point(s) and the initial values of the agents. As an application example, we introduce

a probabilistic algorithm for reaching consensus of opinion and show that it in fact fits

our general framework.

Third, we discuss the linear asymptotic consensus problem for a network of dy-

namic agents whose communication network is modeled by a randomly switching graph.

The switching is determined by a finite state, Markov process, each topology correspond-

ing to a state of the process. We address both the cases where the dynamics of the agents

are expressed in continuous and discrete time. We show that,if the consensus matrices

are doubly stochastic, average consensus is achieved in themean square and almost sure

senses if and only if the graph resulting from the union of graphs corresponding to the

states of the Markov process is strongly connected.

Fourth, we address the consensus-based distributed linearfiltering problem, where

a discrete time, linear stochastic process is observed by a network of sensors. We assume

that the consensus weights are known and we first provide sufficient conditions under



which the stochastic process is detectable, i.e. for a specific choice of consensus weights

there exists a set of filtering gains such that the dynamics ofthe estimation errors (with-

out noise) are asymptotically stable. Next, we develop a distributed, sub-optimal filtering

scheme based on minimizing an upper bound on a quadratic filtering cost. In the station-

ary case, we provide sufficient conditions under which this scheme converges; conditions

expressed in terms of the convergence properties of a set of coupled Riccati equations.

We continue by presenting a connection between the consensus-based distributed linear

filter and the optimal linear filter of a Markovian jump linearsystem, appropriately de-

fined. More specifically, we show that if the Markovian jump linear system is (mean

square) detectable, then the stochastic process is detectable under the consensus-based

distributed linear filtering scheme. We also show that the optimal gains of a linear filter

for estimating the state of a Markovian jump linear system, appropriately defined, can be

used to approximate the optimal gains of the consensus-based linear filter.
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Chapter 1

Introduction

This chapter serves as an introduction to the rest of the thesis, by providing the

motivation for the current work. Moreover, it introduces the problems that are addressed

and our contributions.

1.1 Motivation

In the following chapters we address problems related to multi-agent optimization

and filtering. We design and analyze distributed algorithmswhich are based on the con-

sensus/agreement asymptotic algorithm for performing localized (i.e. using only informa-

tion from neighbors) computations. A consensus problem consists of a group of dynamic

agents who seek to agree upon certain quantities of interestby exchanging information

among them according to a set of rules. This problem can modelmany phenomena involv-

ing information exchange between agents such as cooperative control of vehicles, forma-

tion control, flocking, synchronization, parallel computing, etc. Distributed computation

over networks has a long history in control theory starting with the work of Borkar and

Varaiya [5], Tsitsikils, Bertsekas and Athans [51, 52] on asynchronous agreement prob-

lems and parallel computing. A theoretical framework for solving consensus problems

was introduced by Olfati-Saber and Murray in [42, 43], whileJadbabaie et al. studied

alignment problems [18] for reaching an agreement. Relevant extensions of the consen-
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sus problem were done by Ren and Beard [39], by Moreau in [29] or, more recently, by

Nedic and Ozdaglar in [32, 33] or by Olshevsky and Tsitsiklisin [36].

Typically agents are connected via a network that changes with time due to link fail-

ures, packet drops, node failure, etc. Such variations in topology can happen randomly

which motivates the investigation of consensus problems under a stochastic framework.

Hatano and Mesbahi consider in [17] an agreement problem over random information

networks, where the existence of an information channel between a pair of elements at

each time instance is probabilistic and independent of other channels. In [38], Porfiri and

Stilwell provide sufficient conditions for reaching consensus almost surely in the case

of a discrete linear system, where the communication flow is given by a directed graph

derived from a random graph process, independent of other time instances. Under a sim-

ilar model of the communication topology, Tahbaz-Salehi and Jadbabaie give necessary

and sufficient conditions for almost sure convergence to consensus in [44], while in [45],

the authors extend the applicability of their necessary andsufficient conditions to strictly

stationary ergodic random graphs.

The consensus algorithm proves to be a useful tool for solving distributively opti-

mization and estimation problems. Multi-agent distributed optimization problems appear

naturally in many distributed processing problems (such asnetwork resource allocation,

collaborative control and estimation, etc.), where the optimization cost is a convex func-

tion which is not necessarily separable. A distributed subgradient method for multi-agent

optimization of a sum of convex functions was proposed in [33], where each agent has

only local knowledge of the optimization cost, i.e. knows only one term of the sum.

The agents exchange information according to a communication topology, modeled as an

2



undirected, time varying graph, which defines the communication neighborhoods of the

agents. The agents maintainestimatesof the optimal decision vector, which are updated

in two stages. The first stage consists of a consensus step among the estimates of an

agent and its neighbors. In the second stage, the result of the consensus step is updated

in the direction of a subgradient of the local knowledge of the optimization cost. Another

multi-agent subgradient method was proposed in [20], wherethe communication topol-

ogy is assumed time invariant and where the order of the two stages mentioned above is

inverted.

A fundamental problem in sensor networks is developing distributed algorithms for

the state estimation of a process of interest. Generically,a process is observed by a group

of (mobile) sensors organized in a network. The goal of each sensor is to compute accu-

rate state estimates. The distributed filtering (estimation) problem has received a lot of

attention during the past thirty years. An important contribution was made by Borkar and

Varaiya [5], who addressed the distributed estimation problem of a random variable by a

group of sensors. The particularity of their formulation isthat both estimates and mea-

surements are shared among neighboring sensors. The authors show that if the sensors

form a communication ring, through which information is exchanged infinitely often, then

the estimates converge asymptotically to the same value, i.e. they asymptotically agree.

An extension of the results in reference [5] is given in [50].The recent technological ad-

vances in mobile sensor networks have re-ignited the interest in the distributed estimation

problem. Most papers focusing on distributed estimation propose different mechanisms

for combining the Kalman filter with a consensus filter in order to ensure that the es-

timates asymptotically converge to the same value, schemeswhich will be henceforth

3



called consensus based distributed filtering (estimation)algorithms. In [41] and [40], sev-

eral algorithms based on the idea mentioned above are introduced. In [8], the authors

study the interaction between the consensus matrix, the number of messages exchanged

per sampling time, and the Kalman gain for scalar systems. Itis shown that optimizing

the consensus matrix for fastest convergence and using the centralized optimal gain is

not necessarily the optimal strategy if the number of exchanged messages per sampling

time is small. In [48], the weights are adaptively updated tominimize the variance of the

estimation error. Both the estimation and the parameter optimization are performed in a

distributed manner. The authors derive an upper bound on theerror variance at each node

which decreases with the number of neighboring nodes.

1.2 Contributions of the thesis

Our contributions are as follows. In Chapter 2 we study the performance met-

rics (rate of convergence and guaranteed region of convergence) of the consensus-based,

multi-agent subgradient method proposed in [33], for the case of a constant stepsize. The

communication among agents is modeled by a random graph, independent of other time

instances, and the performance metrics are viewed in the expectation sense. Random

graphs are suitable models for networks that change with time due to link failures, packet

drops, node failure, etc. Our focus is on providing upper bounds on the performance

metrics, which explicitly depend on the probability distribution of the random graph. The

explicit dependence on the probability distribution allows us to determine the optimal

probability distributions in the sense that they would ensure the best guaranteed upper

4



bounds on the performance metric. As an example of possible applications of our results,

we address a scenario where the goal is to tune the communication protocol parameters

of a wireless network so that the performance of the multi-agent subgradient method is

improved, in the context of a distributed parametric systemidentification application.

In Chapter 2 we emphasize the effect and importance of the agreement step in solv-

ing an optimization problem distributively. It is often thecase that we need to solve

optimization problems that go beyond theRn setup. In [47], the authors formulate opti-

mization problems for thetrusted routing problemrouting under a semiring framework. In

[28, 27], the popularparticle swarm optimization algorithmis extended to combinatorial

spaces, such as Euclidean, Manhattan, and Hamming spaces. Related to the distributed

optimization algorithm introduced in Chapter 2, a first stepto extend the applicability of

the algorithm is to formulate and analyze the agreement problem in more general spaces.

Consequently, in Chapter 3 we generalize the asymptotic consensus problem to the more

general case of convex metric spaces and emphasize the fundamental role of the gener-

alized notion of convexity and in particular of the generalized convex hull of a finite set

of points. Tsitsiklis showed in [51] that, under some minimal connectivity assumptions

on the communication network, if an agent updates its value by choosing a point from

the (interior) of the convex hull of its current value and thecurrent values of its neigh-

bors, then asymptotic convergence to consensus is achieved. We will show that this idea

extends naturally to the case of convex metric spaces. As an application we present a

probabilistic consensus of opinion algorithm and show thatit fits our general framework

for a particular convex metric space.

In Chapter 2 we assume that the communication topology, which dictates how the

5



consensus step is performed, is modeled by a random graph, independent of other time

instances. In Chapter 4, we generalize the communication model and study the linear

consensus problem where the communication flow between agents is modeled by a (pos-

sibly directed) switching random graph. The switching is determined by a homogeneous,

finite-state Markov chain, each communication pattern corresponding to a state of the

Markov process. We address both the continuous and discretetime cases and, under cer-

tain assumptions on the matrices involved in the linear scheme, we give necessary and

sufficient conditions such that average consensus is achieved inthe mean square sense

and in the almost sure sense. The Markovian switching model goes beyond the com-

mon i.i.d. assumption on the random communication topologyand appears in the cases

where Rayleigh fading channels are considered. Our aim is toshow how mathemati-

cal techniques used in the stability analysis of Markovian jump linear systems, together

with results inspired by matrix and graph theory, can be usedto prove (intuitively clear)

convergence results for the (linear) stochastic consensusproblem.

In Chapter 5 we address the consensus-based distributed linear filtering problem.

We assume that each agent updates its (local) estimate in twosteps. In the first step, an

update is produced using a Luenberger observer type of filter. In the second step, called

theconsensus step, every sensor computes a convex combination between its local update

and the updates received from the neighboring sensors. For given consensus weights, we

will first give sufficient conditions for the existence of filter gains such that the dynamics

of the estimation errors (without noise) are asymptotically stable. Next, we present a

distributed, sub-optimal filtering algorithm, valid for time varying topologies as well,

resulting from minimizing an upper bound on a quadratic costexpressed in terms of the

6



covariances matrices of the estimation errors. We will alsopresent a connection between

the consensus-based linear filter and the linear filtering ofa Markovian jump linear system

appropriately defined, a connection which was inspired by our previous work on state

estimation for switching systems (see for instance [24], [25]).
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Chapter 2

Distributed Optimization under Random Communication Topologies

2.1 Introduction

We investigate the collaborative optimization problem in amulti-agent setting, when

the agents make decisions in a distributed manner using local information, while the

communication topology used to exchange messages and information is modeled by a

graph-valued random process, assumed independent and identically distributed (i.i.d.).

Specifically, we study the performance of the consensus-based multi-agent distributed

subgradient method proposed in [33], for the case of a constant stepsize.

Random graphs are suitable models for networks that change with time due to link

failures, packet drops, node failures, etc. An analysis of the multi-agent subgradient

method under random communication topologies is addressedin [22]. The authors as-

sume that the consensus weights are lower bounded by some positive scalar and give

upper bounds on the performance metrics as functions of thisscalar and other parameters

of the problem. More precisely, the authors give upper bounds on the distance between

the cost function and the optimal solution (in expectation), where the cost is evaluated

at the (weighted) time average of the optimal decision vector’s estimate.Our main goal

is to provide upper bounds on the performance metrics, whichexplicitly depend on the

probability distribution of the random graph. We first derive an upper bound on the

difference between the cost function, evaluated at the estimate, and the optimal value.

8



Next, for a particular class of convex functions, we focus onthe distance between the

estimate of the optimal decision and the minimizer. The upper bound we provide has a

constant component and a time varying component. For the latter, we provide the rate

of convergence to zero. The performance metrics are evaluated via their expected val-

ues. The explicit dependence on the graph’s probability distribution may be useful to

design probability distributions that would ensure the best guaranteed upper bounds on

the performance metrics. This idea has relevance especially in the wireless networks,

where the communication topology has a random nature with a probability distribution

(partially) determined by the communication protocol parameters (the reader can consult

[21, 35], where the authors introduce probabilistic modelsfor successful transmissions as

functions of the transmission powers). As an example of possible application, we show

how the distributed optimization algorithm can be used to perform collaborative system

identification and we present numerical experiments results under the randomized [7] and

broadcast [1] gossip protocols. Similar performance metrics as our are studied in [2],

where the authors generalizes the randomized incremental subgradient method and where

the stochastic component in the algorithm is described by a Markov chain, which can be

constructed in a distributed fashion using local information only. Newer results on the dis-

tributed optimization problem can be found in [13], where the authors analyze distributed

algorithms based on dual averaging of subgradients, and provide sharp bounds on their

convergence rates as a function of the network size and topology.

Notations: Let X be a subset ofRn and lety be a point inRn. By slight abuse

of notation, let‖y−X‖ denote the distance from the pointy to the setX, i.e. ‖y−X‖ ,

minx∈X ‖y− x‖, where‖ · ‖ is the standard Euclidean norm. For a twice differentiable func-
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tion f (x), we denote by∇ f (x) and∇2 f (x) the gradient and Hessian off at x, respectively.

Given a symmetric matrixA, by (A� 0) A� 0 we understandA is positive (semi) definite.

The symbol⊗ represents the Kronecker product.

Let f : Rn→R be a convex function. We denote by∂ f (x) the subdifferential of f

at x, i.e. the set of all subgradients off at x:

∂ f (x) = {d ∈Rn| f (y) ≥ f (x)+d′(y− x), ∀y ∈Rn}. (2.1)

Let ε ≥ 0 be a nonnegative real number. We denote by∂ε f (x) theε-subdifferential of f at

x, i.e. the set of allε-subgradients off at x:

∂ε f (x) = {d ∈Rn| f (y) ≥ f (x)+d′(y− x)− ε, ∀y ∈Rn}. (2.2)

The gradient of the differentiable functionf (x) onR
n satisfies aLipschitz condition with

constant Lif

‖∇ f (x)−∇ f (y)‖ ≤ L‖x−y‖, ∀x,y ∈Rn.

The differentiable, convex functionf (x) onR
n is strongly convex with constant lif

f (y) ≥ f (x)+∇ f (x)′(y− x)+
l
2
‖y− x‖2, ∀x,y ∈Rn.

We will denote by LEM and SLEM the largest and second largest eigenvalue in modulus

of a matrix, respectively. We will use CBMASM as the abbreviation for Consensus-Based

Multi-AgentSubgradientMethod and pmf for probability mass function.

Chapter structure: Section 2.2 contains the problem formulation. In Section 2.3 we

introduce a set of preliminary results, which mainly consist of providing upper bounds for

a number a quantities of interest. Using these preliminary results, in Section 2.4 we give
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upper bounds for the expected value of two performance metrics: the distance between

the cost function evaluated at the estimate and the optimal solution and the (squared)

distance between the estimate and the minimizer. Section 2.5 shows how the distributed

optimization algorithm can be used for collaborative system identification.

2.2 Problem formulation

2.2.1 Communication model

Consider a network ofN agents, indexed byi = 1, . . . ,N. The communication topol-

ogy is time varying and is modeled by a random graphG(k) = (V,E(k)), whereV is the

set ofN vertices (nodes) andE(k) = (ei j (k)) is the set of edges, and where we usedk to

denote the time index. The edges in the setE(k) correspond to the communication links

among agents. Given a positive integerM, the graphG(k) takes values in a finite set

G = {G1,G2, . . . ,GM} at eachk, where the graphsGi = (V,Ei) are assumedundirectedand

without self loops. In other words, we will consider only bidirectional communication

topologies. The underlying random process ofG(k) is assumed i.i.d. with probability

distributionPr(G(k) =Gi) = pi , ∀k≥ 0, where
∑M

i=1 pi = 1 andpi > 0.

Assumption 2.2.1. (Connectivity assumption) The graph̄G = (V, Ē) resulting from the

union of all graphs in theG is connected, where

Ḡ=
M⋃

i=1

Gi =




V,

M⋃

i=1

Ei




.

Let G be an undirected graph withN nodes and no self loops and letA ∈ RN×N

be a row stochastic matrix, with positive diagonal entries.We say that the matrixA
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correspondsto the graphG or the graphG is inducedby A if any non-zero entry (i,j) of

A, with i , j implies a link from j to i in G and vice-versa.

2.2.2 Optimization model

The task of theN agents consists of minimizing a convex functionf :Rn→R. The

function f is expressed as a sum ofN functions, i.e.

f (x) =
N∑

i=1

fi(x), (2.3)

wherefi :Rn→R are convex. Formally expressed, the agents want to cooperatively solve

the following optimization problem

min
x∈Rn

N∑

i=1

fi(x). (2.4)

The fundamental assumption is that each agenti, has access only to the functionfi .

Let f ∗ denote the optimal value off and letX∗ denote the set of optimizers off ,

i.e. X∗ = {x∈Rn| f (x) = f ∗}. Let xi(k) ∈Rn designate theestimate of the optimal decision

vectorof (2.4), maintained by agenti, at timek. The agents exchange estimates among

themselves subject to the communication topology described by the random graphG(k).

As proposed in [33], the agents update their estimates usinga modified incremental

subgradient method. Compared to the standard subgradient method, the local estimate

xi(k) is replaced by a convex combination ofxi(k) with the estimates received from the

neighbors:

xi(k+1)=
N∑

j=1

ai j (k)x j(k)−α(k)di(k), (2.5)

whereai j (k) is the (i, j)th entry of a stochastic random matrixA(k) which corresponds

to the communication graphG(k). The matricesA(k) form an i.i.d. random process
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taking values in a finite set ofsymmetricstochastic matrices withpositive diagonal entries

A = {Ai}Mi=1, whereAi is a stochastic matrix corresponding to the graphGi ∈ G, for i =

1, . . . ,M. The probability distribution ofA(k) is inherited fromG(k), i.e. Pr(A(k) = Ai) =

Pr(G(k) =Gi) = pi . The real valued scalarα(k) is the stepsize, while the vectordi(k) ∈Rn

is a subgradient offi at xi(k), i.e. di(k) ∈ ∂ fi(xi(k)). Obviously, whenfi(x) are assumed

differentiable,di(k) becomes the gradient offi at xi(k), i.e. di(k) = ∇ fi(xi(k)).

Note that the first part of equation (2.5) is a consensus step,a problem that has

received a lot of attention in recent years, both in a deterministic ([6, 14, 18, 29, 39, 51,

52]) and a stochastic ([17, 23, 44, 45]) framework.

The consensus problem under different gossip algorithms was studied in [1, 7, 12].

We note that there is direct connection between our communication model and the com-

munication models used in therandomized gossip protocol[7] andbroadcast communi-

cation protocol[1]. Indeed, in the case of the randomized communication protocol, the

setG is formed by the graphsGi j with only one link (i, j), wherePr(G(k) =Gi j ) = 1
NPi j

for somePi j > 0 with
∑N

i=1Pi j = 1, while the setA is formed by stochastic matricesAi j of

the formAi j = I − 1
2(ei −ej)(ei −e j)′, where vectors theei represent the standard basis. In

the case of the broadcast communication protocol, the setG is formed by the graphsGi ,

whereGi contains links between the nodei and the nodes in its neighborhood, denoted

by Ni . The probability distribution ofG(k) is given byPr(G(k) =Gi) = 1
N and the setA

is formed by matrices of the formAi = I −δi
∑

j∈Ni
(ei −ej)(ei −e j)′, for some 0< δi ≤ 1

|Ni | .

The following assumptions, which will not necessarily be used simultaneously, in-

troduce properties of the functionf (x).
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Assumption 2.2.2.(Non-differentiable functions)

(a) The subgradients of the functions fi(x) are uniformly bounded, i.e. there exists a

positive scalarϕ such that

‖d‖ ≤ ϕ,∀d ∈ ∂ fi(x), ∀x ∈Rn, i = 1, . . . ,N,

(b) The stepsize is constant, i.e.

α(k) = α, ∀k≥ 0,

(c) The optimal solution set X∗ is nonempty.

Assumption 2.2.3.(Differentiable functions)

(a) The functions fi(x) are twice differentiable onRn,

(b) There exists positive scalars li , Li such that

l i I � ∇2 fi(x) � Li I , ∀x ∈Rn and∀i,

(c) The stepsize is constant, i.e.α(k) = α for all k and satisfies the inequality

0< α < min

{
λ+1

L
,
1
l

}

,

whereλ is the smallest among all eigenvalues of matrices Ai , l = mini l i and L=

maxi Li .

Assumption 2.2.3 -(b) is satisfied if the gradient offi(x) satisfies a Lipschitz condi-

tion with constantLi and if fi(x) is strongly convex with constantl i . Also, under Assump-

tions 2.2.3,X∗ has one element which is the unique minimizer off (x), denote henceforth

by x∗.
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2.3 Preliminary Results

In this section we lay the foundation for our main results in Section 2.4. The pre-

liminary results introduced here revolve around the idea ofproviding upper-bounds on

a number of quantities of interest. The first quantity is represented by the distance be-

tween the estimate of the optimal decision vector and the average of all estimates. The

second quantity is described by the distance between the average of all estimates and the

minimizer.

We introduce theaveragevector of estimates of the optimal decision vector, de-

noted by ¯x(k) and defined by

x̄(k) ,
1
N

N∑

i=1

xi(k). (2.6)

The dynamic equation for the average vector can be derived from (2.5) and takes the form

x̄(k+1)= x̄(k)− α(k)
N

h(k), (2.7)

whereh(k) =
∑N

i=1di(k).

We introduce also thedeviationof the local estimatesxi(k) from the average esti-

matex̄(k), which is denoted byzi(k) and defined by

zi(k) , xi(k)− x̄(k), i = 1. . .N. (2.8)

and letβ be a positive scalar such that

‖zi(0)‖ ≤ β, i = 1. . .N.

Let us define theaggregatevectors of estimates, average estimates, deviations and (sub)gradients,

respectively:

x(k)′ , [x1(k)′, x2(k)′, . . . , xN(k)′] ∈RNn,
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x̄(k)′ , [ x̄(k)′, x̄(k)′, . . . , x̄(k)′] ∈RNn,

z(k)′ , [z1(k)′,z2(k)′, . . . ,zN(k)′] ∈RNn

and

d(k)′ , [d1(k)′,d2(k)′, . . . ,dN(k)′] ∈RNn.

From (2.6) we note that the aggregate vector of average estimates can be expressed as

x̄(k) = Jx(k),

whereJ = 1
N11

′⊗ I , with I the identity matrix inRn×n and1 the vector of all ones inRN.

Consequently, the aggregate vector of deviations can be written as

z(k) = (I −J)x(k), (2.9)

whereI is the identity matrix inRnN×nN. The next Proposition characterizes the dynamics

of the vectorz(k).

Proposition 2.3.1.The dynamic evolution of the aggregate vector of deviationsis given

by

z(k+1)=W(k)z(k)−α(k)(I−J)d(k), z(0)= z0, (2.10)

whereW(k) = A(k)−J andA(k) = A(k)⊗ I, with solution

z(k) = Φ(k,0)z(0)−
k−1∑

s=0

α(s)Φ(k, s+1)d(s), (2.11)

whereΦ(k, s) is the transition matrix of (2.10) defined byΦ(k, s),W(k−1)W(k−2)· · ·W(s),

withΦ(k,k) = I.
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Proof. From (2.5) the dynamics of the aggregate vector of estimatesis given by

x(k+1)= A(k)x(k)−α(k)d(k). (2.12)

From (2.9) together with (2.12), we can further write

z(k+1)= (I −J)x(k+1)= (A(k)−J)x(k)−α(k)(I −J)d(k).

By noting that

(A(k)−J)z(k) = (A(k)−J)(I −J)x(k) = (A(k)−J)x(k),

we obtain (2.10). The solution (2.11) follows from (2.10) together with the observation

thatΦ(k, s)(I −J) = Φ(k, s). �

Remark 2.3.1. The transition matrixΦ(k, s) of the stochastic linear equation (2.10) can

also be represented as

Φ(k, s) =





s∏

i=1

A(k− i)




−J, (2.13)

whereJ =
(

1
N11

′
)

⊗ I . This follows from the fact that for any i∈ {1,2, . . . , s−1} we have

(A(k− i)−J)(A(k− i −1)−J) = A(k− i)A(k− i −1)−J.

Remark 2.3.2 (On the first and second moments of the

transition matrixΦ(k, s)). Let m be a positive integer and consider the transition matrix

Φ(k+m,k)=W(k+m−1). . .W(k), generated by a sequence of length m of random graphs,

i.e. G(k) . . .G(k+m−1), for some k≥ 0. The random matrixΦ(k+m,k) takes values of

the form Wi1Wi2 · · ·Wim, with i j ∈ {1,2, . . . ,M} and j= 1, . . . ,m. The norm of a particular

realization ofΦ(k+m,k) is given by the LEM of the matrix product Wi1Wi2 · · ·Wim or the
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SLEM of Ai1Ai2 · · ·Aim, denoted henceforth byλi1...im. Let qi1...im =
∏m

j=1 pi j be the proba-

bility of the sequence of graphs Gi1 . . .Gim that appear during the time interval[k,k+m].

Let Im be the set of sequences of indices of length m for which the union of graphs with the

respective indices produces a connected graph, i.e. Im= {i1i2 . . . im|
⋃m

j=1Gi j = connected}.

Using the previous notations, the first and second moments ofthe norm ofΦ(k+m,k) can

be expressed as

E[‖Φ(k+m,k)‖] = ηm, (2.14)

E[‖Φ(k+m,k)‖2] = ρm, (2.15)

whereηm =
∑

j∈Im q jλ j + 1−∑

j∈Im q j and ρm =
∑

j∈Im q jλ
2
j + 1−∑

j∈Im q j . The integer j

was used as an index for the elements of set Im, i.e. for an element of the form i1 . . . im.

The above formulas follow from results introduced in [18], Lemma 1, or in [39],

Lemma 3.9, which state that for any sequence of indices i1 . . . im ∈ Im, the matrix product

Ai1 · · ·Aim is ergodic, and thereforeλ j < 1, for any j∈ Im. Conversely, if j< Im thenλ j = 1.

We also note that
∑

j∈Im q j is the probability of having a connected graph over a time

interval of length m. Due to Assumption 2.2.1, for sufficiently large values of m, the set Im

is nonempty. In fact for m≥ M, Im is always non-empty.Therefore, for anym such that

Im is not empty, we have that 0< ρm< ηm< 1. In general for large values of m, it may be

difficult to compute all eigenvaluesλ j , j ∈ Im. We can omit the necessity of computing the

eigenvaluesλ j , and this way decrease the computational burden, by using the following

upper bounds onηm andρm

ηm≤ λmpm+1−pm, (2.16)

ρm≤ λ2
mpm+1−pm, (2.17)
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whereλm = maxj∈Imλ j and pm =
∑

j∈Im q j is the probability to have a connected graph

over a time interval of length m. For notational simplicity,in what follows we will omit

the index m when referring to the scalarsηm andρm.

Throughout this chapter we will use the symbolsm, η andρ in the sense defined

within the Remark 2.3.2. Moreover, the value ofm is chosen such thatIm is nonempty.

The existence of such a value is guaranteed by Assumption 2.2.1.

The next proposition gives upper bounds on the expected values of the norm and

the squared norm of the transition matrixΦ(k, s).

Proposition 2.3.2. Let Assumption 2.2.1 hold, and let r≤ s≤ k be three nonnegative

integer values and m a positive integer, such that the set Im is non-empty. Then, the

following inequalities involving the transition matrixΦ(k, s) of (2.10), hold

E[‖Φ(k, s)‖] ≤ η
⌊

k−s
m

⌋

, (2.18)

E[‖Φ(k, s)‖2] ≤ ρ
⌊

k−s
m

⌋

, (2.19)

E[‖Φ(k, r)Φ(k, s)′‖] ≤ ρ
⌊

k−s
m

⌋

ηb s−r
m c, (2.20)

whereη andρ are defined in Remark 2.3.2.

Proof. We fix anm such that the probability of having a connected graph over a time

interval of lengthm is positive, i.e. Im is non-empty. Note that, by Assumption 2.2.1,

such a value always exists (pickm≥ M). Let t be the number of intervals of lengthm

betweens andk, i.e.

t =

⌊

k− s
m

⌋

,
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and lets0, s1, . . . , st be a sequence of nonnegative integers such thats= s0< s1< . . . < st ≤ k

wheresi+1− si =mandi = 0, . . . ,m−1. By the semigroup property of transition matrices,

it follows that

Φ(k, s) = Φ(k, st)Φ(st, st−1) · · ·Φ(s1, s),

or

‖Φ(k, s)‖ ≤ ‖Φ(st, st−1)‖ · · · ‖Φ(s1, s)‖,

where we use the fact that‖Φ(k, st)‖ ≤ 1. Using the i.i.d. assumption on the random

processA(k), we can further write

E[‖Φ(k, s)‖] ≤ E[‖Φ(st, st−1)‖] · · ·E[‖Φ(s1, s)‖],

which together with (2.14) leads to inequality (2.18).

Similarly, inequality (2.19) follows from (2.15) and from the i.i.d. assumption on

the random graph process.

We now turn to inequality (2.20). By the semigroup property we get

E[‖Φ(k, r)Φ(k, s)′‖] ≤ E[‖Φ(k, s)‖2‖Φ(s, r)‖] ≤ E[‖Φ(k, s)‖2]E[‖Φ(s, r)‖],

where the second inequality followed by the independence ofA(k). Inequality (2.20)

follows from (2.18) and (2.19). �

In the next lemma we show that, under Assumption 2.2.3, for small enoughα the

gradients∇ fi(xi(k)) remain bounded with probability one for allk.

Lemma 2.3.1. Let Assumption 2.2.3 hold and letF : RNn→ R be a function given by

F (x) =
∑N

i=1 fi(xi) wherex′ = (x′1, . . . , x
′
N). There exists a positive scalarϕ such that

‖∇ fi(xi(k))‖ ≤ ϕ,∀ i,k w.p. 1,
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‖∇ fi(x̄(k))‖ ≤ ϕ,∀ i,k w.p. 1,

whereϕ= L‖x(0)− x̃‖+L
(

2
1−q +1

)

‖x̃‖, q=max{|λ−αL|, |1−αl|}, x̃ is the unique minimizer

ofF (x), and xi(k) and x̄(k) satisfy (2.5) and (2.7), respectively.

Proof. We first note that since the matricesAi have positive diagonal entries, they are

aperiodic and thereforeλ ∈ (−1 1]. From Assumption 2.2.3 it follows immediately that

F (x) is a convex, twice differentiable function satisfying

lI � ∇2F (x) � LI , (2.21)

wherel = mini l i, L = maxi Li and I is the identity matrix inRnN×nN. In addition,F (x)

has a unique minimizer denoted byx̃. The dynamics described by (2.5) can be compactly

written as

x(k+1)= A(k)x(k)−α∇F (x(k)), x(0)= x0, (2.22)

with x(k)′ = (x1(k)′, . . . , xN(k)′).

We observe that equation (2.22) is a modified version of the gradient method with

constant step, where instead of the identity matrix, we havethatA(k) multipliesx(k). In

what follows we show that the stochastic dynamics (2.22) is stable with probability one.

Using a similar idea as in Theorem 3, page 25 of [37], we have that

∇F (x(k)) = ∇F (x̃)+
∫ 1

0
∇2F (x̃+τ(x(k)− x̃))(x(k)− x̃)dτ =H(k)(x(k)− x̃),

wherelI �H(k) � LI by virtue of (2.21). Hence, with probability one

‖x(k+1)− x̃‖ = ‖A(k)x(k)− x̃−α∇F (x(k))+A(k)x̃−A(k)x̃‖ ≤

≤ ‖A(k)−αH(k)‖ ‖x(k)− x̃‖+ ‖A(k)− I‖ ‖x̃‖.
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But since

(λ−αL)I � A(k)−H(k) � (1−αl)I ,

it follows that

‖x(k+1)− x̃‖ ≤ q‖x(k)− x̃‖+ |λ−1|‖x̃‖,

whereq=max{|λ−αL|, |1−αl|}. Since by Assumption 2.2.3-(c)α < min
{
λ+1

L , 1
l

}

we get

thatq< 1 and therefore the dynamics (2.22) is stable with probability one and

‖x(k)− x̃‖ ≤ qk‖x(0)− x̃‖+ 2
1−q

‖x̃‖ ≤ ‖x(0)− x̃‖+ 2
1−q

‖x̃‖, ∀k.

From Assumption 2.2.3 we have that

‖∇ fi(xi(k))‖ ≤ ‖∇F (x(k))‖ ≤ L‖x(k)− x̃‖ ≤ L‖x(0)− x̃‖+ 2L
1−q

‖x̃‖. (2.23)

We also have that

‖x̄(k)− x̃‖ = ‖Jx(k)−Jx̃+Jx̃− x̃‖ ≤ ‖x(k)− x̃‖+ ‖x̃‖,

from where it follows that

‖∇ fi(x̄(k))‖ ≤ ‖∇F (x̄(k))‖ ≤ L‖x̄(k)− x̃‖ ≤ L‖x(0)− x̃‖+L

(

2
1−q

+1

)

‖x̃‖. (2.24)

Taking the maximum among the right hand side terms of the inequalities (2.23) and

(2.24), the result follows. �

Remark 2.3.3. If the stochastic matrices Ai are generated using a Laplacian based

scheme, e.g.

Ai = I −εLi ,∀i,

22



whereLi is the Laplacian of the graph Gi andε ≤ 1
N , then it turns out thatλ ≥ 0. Hence,

the inequality in Assumption 2.2.3-(c) is satisfied if

0< α <
1
L
,

which is a sufficient condition for the stability of (2.5). In the case of therandomized and

broadcast gossip protocols it can be checked thatλ = 0.

Remark 2.3.4. Throughout the rest of the chapterϕ should be interpreted in the context

of the assumptions used, i.e. under Assumption 2.2.2,ϕ is the uniform bound on the

subgradients of fi(x), while under Assumption 2.2.3,ϕ is the bound on the gradients

∇ fi(xi(k)) and∇ fi(x̄(k)) given by Lemma 2.3.1.

The following lemma gives upper bounds on the first and the second moments of

the distance between the estimatexi(k) and the average of the estimates, ¯x(k).

Lemma 2.3.2.Under Assumptions 2.2.1 and 2.2.2 or 2.2.1 and 2.2.3, for thesequences

{xi(k)}k≥0, i = 1, . . . ,N generated by (2.5) with a constant stepsizeα, the following in-

equalities hold

E[‖xi(k)− x̄(k)‖] ≤ β
√

Nη
⌊

k
m

⌋

+αϕ
√

N
m

1−η (2.25)

E[‖xi(k)− x̄(k)‖2] ≤ Nβ2ρ

⌊
k
m

⌋

+Nα2ϕ2
(

1+2
m

1−η

)

m
1−ρ +2Nαβϕm

ρ

⌊
k−1
m

⌋

+1−η
⌊

k−1
m

⌋

+1

ρ−η ,

(2.26)

whereη, ρ and m are defined in Remark 2.3.2.

Proof. Note that the norm of the deviationzi(k) = xi(k)− x̄(k) is upper bounded by the

norm of the aggregate vector of deviationsz(k) (with probability one), i.e.‖zi(k)‖ ≤ ‖z(k)‖.
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Hence, by Proposition 2.3.1, we have

‖zi(k)‖ ≤ ‖z(k)‖ = ‖Φ(k,0)z(0)−α
k−1∑

s=0

Φ(k, s+1)d(s)‖,

or

E[‖zi(k)‖] ≤ β
√

NE[‖Φ(k,0)‖] +αϕ
√

N
k−1∑

s=0

E[‖Φ(k, s+1)‖],

where we used the fact that‖zi(0)‖ ≤ β and‖di(k)‖ ≤ ϕ, ∀k ≥ 0.

By inequality (2.18) of Proposition 2.3.2, we get

E[‖zi(k)‖] ≤ β
√

Nηb
k
mc+αϕ

√
N

k−1∑

s=0

ηb
k−s−1

m c.

Noting that the sum
∑k−1

s=0η
b k−s−1

m c can be upper bounded by

k−1∑

s=0

ηb
k−s−1

m c ≤m

b k−1
m c∑

s=0

ηs=m
1−ηb k−1

m c+1

1−η ≤m
1

1−η,

inequality (2.25) follows.

We now turn to obtaining an upper bound on the second moment of‖z(k)‖.

Let Z(k) ∈RNn×Nn be the symmetric, semi-positive definite matrix defined by

Z(k) , z(k)z(k)′.

Using Proposition 2.3.1, it follows thatZ(k) satisfies the following dynamic equa-

tion

Z(k+1)=W(k)Z(k)W(k)′+F(k), (2.27)

whereF(k) is given by

F(k) = α2(I −J)d(k)d(k)′(I −J)′−αW(k)z(k)d(k)′(I −J)′−α(I −J)d(k)z(k)′W(k)′.

(2.28)
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The solution of (2.27) is given by

Z(k) = Φ(k,0)Z(0)Φ(k,0)′+
k−1∑

s=0

Φ(k, s+1)F(s)Φ(k, s+1)′. (2.29)

For simplicity, in what follows, we will omit the matrixI −J from F(k) since it disappears

by multiplication with the transition matrix (see Proposition 2.3.1). We can further write

‖Z(k)‖ ≤ ‖Φ(k,0)‖2‖Z(0)‖+
k−1∑

s=0

‖Φ(k, s+1)F(s)Φ(k, s+1)′‖,

and by noting that‖Z(k)‖ = ‖z(k)‖2, we obtain

E[‖z(k)‖2] ≤ E[‖Φ(k,0)‖2]‖z(0)‖2+
k−1∑

s=0

E[‖Φ(k, s+1)F(s)Φ(k, s+1)′‖]. (2.30)

From (2.19) of Proposition 2.3.2 we obtain

E[‖Φ(k,0)‖2] ≤ ρ
⌊

k
m

⌋

.

We now focus on the terms of the sum in the right hand-side of (2.30). We have

Φ(k, s+1)F(s)Φ(k, s+1)′ = α2Φ(k, s+1)d(s)d(s)′Φ(k, s+1)′−

−αΦ(k, s+1)W(s)z(s)d(s)′Φ(k, s+1)′−αΦ(k, s+1)d(s)z(s)′W(s)′Φ(k, s+1)′.

Using the solution ofz(k) given in (2.11), we get

Φ(k, s+1)W(s)z(s)d(s)′Φ(k, s+1)′ =

= Φ(k, s+1)W(s)




Φ(s,0)z(0)−α

s−1∑

r=0

Φ(s, r +1)d(r)




d(s)′Φ(k, s+1)′

= Φ(k,0)z(0)d(s)′Φ(k, s+1)′−α
s−1∑

r=0

Φ(k, r +1)d(r)d(s)′Φ(k, s+1)′. (2.31)

Similarly,

Φ(k, s+1)d(s)z(s)′W(s)′Φ(k, s+1)′ =
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Φ(k, s+1)d(s)z(0)′Φ(k,0)′−α
s−1∑

r=0

Φ(k, s+1)d(s)d(r)′Φ(k, r +1)′. (2.32)

We now give a more explicit formula forΦ(k, s+1)F(s)Φ(k, s+1)′:

Φ(k, s+1)F(s)Φ(k, s+1)′ = α2Φ(k, s+1)d(s)d(s)′Φ(k, s+1)′−

−αΦ(k,0)z(0)d(s)′Φ(k, s+1)+α2
s−1∑

r=0

Φ(k, r +1)d(r)d(s)′Φ(k, s+1)′−

−αΦ(k, s+1)d(s)z(0)′Φ(k,0)′+α2
s−1∑

r=0

Φ(k, s+1)d(s)d(r)′Φ(k, r +1)′.

By applying the norm operator, we get

‖Φ(k, s+1)F(s)Φ(k, s+1)′‖ ≤ Nα2ϕ2‖Φ(k, s+1)‖2+

+Nα2ϕ2
s−1∑

r=0

‖Φ(k, r +1)Φ(k, s+1)′‖+Nα2ϕ2
s−1∑

r=0

‖Φ(k, s+1)Φ(k, r +1)′‖+

+Nαβϕ‖Φ(k, s+1)Φ(k,0)′‖+Nαβϕ‖Φ(k,0)Φ(k, s+1)′‖,

or

‖Φ(k, s+1)F(s)Φ(k, s+1)′‖ ≤ Nα2ϕ2‖Φ(k, s+1)‖2+

+2Nα2ϕ2
s−1∑

r=0

‖Φ(k, r +1)Φ(k, s+1)′‖+2Nαβϕ‖Φ(k, s+1)Φ(k,0)′‖. (2.33)

Next we derive bounds for the expected values of each of the terms in (2.33). Based on

the results of Proposition 2.3.2 we can write

E[‖Φ(k, s+1)‖2] ≤ ρ
⌊

k−s−1
m

⌋

,

s−1∑

r=0

E[‖Φ(k, r +1)Φ(k, s+1)′‖] ≤
s−1∑

r=0

ρ

⌊
k−s−1

m

⌋

ηb s−r
m c ≤mρ

⌊
k−s−1

m

⌋ b s
mc∑

r=0

ηr ≤

≤mρ
⌊

k−s−1
m

⌋1−ηb s
mc+1

1−η ≤mρ
⌊

k−s−1
m

⌋ 1
1−η
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and

E[‖Φ(k, s+1)Φ(k,0)′‖] ≤ ρ
⌊

k−s−1
m

⌋

η

⌊
s+1
m

⌋

.

Therefore we obtain

E[‖Φ(k, s+1)F(s)Φ(k, s+1)′‖] ≤ Nα2ϕ2
(

1+
2m

1−η

)

ρ

⌊
k−s−1

m

⌋

+2Nαβϕρ
⌊

k−s−1
m

⌋

η

⌊
s+1
m

⌋

.

We know compute an upper bound for
∑k−1

s=0 E[‖Φ(k, s+ 1)F(s)Φ(k, s+ 1)′‖]. Using the

fact that
k−1∑

s=0

ρ

⌊
k−s−1

m

⌋

≤m

⌊
k−1
m

⌋

∑

s=0

ρs≤m
1−ρ

⌊
k−1
m

⌋

+1

1−ρ ≤m
1

1−ρ

and
k−1∑

s=0

ρ

⌊
k−s−1

m

⌋

η

⌊
s+1
m

⌋

≤
k−1∑

s=0

ρ

⌊
k−s−1

m

⌋

ηb s
mc ≤

≤m

⌊
k−1
m

⌋

∑

s=0

ρ

⌊
k−1
m

⌋

−s
ηs=m

ρ

⌊
k−1
m

⌋

+1−η
⌊

k−1
m

⌋

+1

ρ−η ,

we obtain

k−1∑

s=0

E[‖Φ(k, s+1)F(s)Φ(k, s+1)′‖] ≤ Nα2ϕ2
(

1+
2m

1−η

)

m
1−ρ+

+2Nαβϕm
ρ

⌊
k−1
m

⌋

+1−η
⌊

k−1
m

⌋

+1

ρ−η .

Finally we obtain an upper bound for the second moment of‖z(k)‖:

E[‖z(k)‖2] ≤ Nβ2ρ

⌊
k
m

⌋

+Nα2ϕ2
(

1+
2m

1−η

)

m
1−ρ +2Nαβϕm

ρ

⌊
k−1
m

⌋

+1−η
⌊

k−1
m

⌋

+1

ρ−η .

�

The following lemma allows us to interpretdi(k) as anε-subgradient offi at x̄(k)

(with ε being a random variable).
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Lemma 2.3.3. Let Assumptions 2.2.2 or 2.2.3 hold. Then the vector di(k) is an ε(k)-

subdifferential of fi at x̄(k), i.e. di(k) ∈ ∂ε(k) fi(x̄(k)) and h(k) =
∑N

i=1di(k) is an Nε(k)-

subdifferential of f atx̄(k), i.e. h(k) ∈ ∂Nε(k) f (x̄(k)), for any k≥ 0, where

ε(k) = 2ϕβ
√

N‖Φ(k,0)‖+2αϕ2
√

N
k−1∑

s=0

‖Φ(k, s+1)‖. (2.34)

Proof. The proof is somewhat similar to the proof of Lemma 3.4.5 of [19]. Let d̄i(k) be a

subgradient offi at x̄(k). By the subgradient definition we have that

fi(xi(k)) ≥ fi(x̄(k))+ d̄i(k)′(xi(k)− x̄(k)) ≥ fi(x̄(k))−‖d̄i(k)‖‖(xi(k)− x̄(k))‖,

or

fi(xi(k)) ≥ fi(x̄(k))−ϕ‖zi(k)‖.

Furthermore, for anyy ∈Rn we have that

fi(y) ≥ fi(xi(k))+di(k)′(y− xi(k)) = fi(xi(k))+di(k)′(y− x̄(k))+di(k)′(x̄(k)− xi(k)) ≥

≥ fi(x̄(k))+di(k)′(y− x̄(k))−2ϕ‖zi(k)‖ ≥ fi(x̄(k))+di(k)′(y− x̄(k))−2ϕ‖z(k)‖,

or

fi(y) ≥ fi(x̄(k))+di(k)′(y− x̄(k))− ε(k),

whereε(k) = 2ϕ‖z(k)‖. Using the definition of theε-subgradient, it follows thatdi(k) ∈

∂ε(k) fi(x̄(k)). Summing over alli we get that
∑N

i=1di(k) ∈ ∂Nε(k) f (x̄(k)). Note, thatε(k) has

a random characteristic due to the assumptions onA(k). �

For twice differentiable cost functions with lower and upper bounded hessians, the

next result gives an upper bound on the second moment of the distance between the aver-

age vector ¯x(k) and the minimizer off .
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Lemma 2.3.4.Let Assumptions 2.2.1 and 2.2.3 hold and let{x̄(k)}k≥0 be a sequence of

vectors defined by iteration (2.7). Then, the following inequality holds

E[‖x̄(k)− x∗‖2] ≤ ‖x̄(0)− x∗‖2γk+
4αϕβ

√
N

γη

γk−η k
m

γ−η 1
m

+
α2ϕ2

1−γ

(

4
√

N
m

1−η +1

)

, (2.35)

whereγ = 1−αl, with l =mini l i andη is defined in Remark 2.3.2.

Proof. Under Assumption 2.2.3,f (x) is a strongly convex function with constantNl,

wherel =mini l i and therefore it follows that

f (x)− f ∗ ≥ Nl
2
‖x− x∗‖2. (2.36)

We use the same idea as in the proof of Proposition 2.4 in [30],formulated under a

deterministic setup. By (2.7), where we use a constant stepsizeα, we obtain

‖x̄(k+1)− x∗‖2 = ‖x̄(k)− x∗− α
N

h(k)‖2 = ‖x̄(k)− x∗‖2−2
α

N
h(k)′(x̄(k)− x∗)+α2ϕ2.

Using the fact that, by Lemma 2.3.3,h(k) is aNε(k)-subdifferential of f at x̄(k), we have

f (x∗) ≥ f (x̄(k))+h(k)′(x∗− x̄(k))−Nε(k),

or, from inequality (2.36),

−h(k)′(x̄(k)− x∗) ≤ −Nl
2
‖x̄(k)− x∗‖2+Nε(k).

Further, we can write

‖x̄(k+1)− x∗‖2 ≤ (1−αl)‖x̄(k)− x∗‖2+2αε(k)+α2ϕ2

or

E[‖x̄(k)− x∗‖2] ≤ (1−αl)k ‖x̄(0)− x∗‖2+
k−1∑

s=0

(1−αl)k−s−1 (2αE[ε(s)] +α2ϕ2).
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Note that from Assumption 2.2.3-(c), 0< α < 1
l and therefore the quantityγk = (1−αl)k

does not grow unbounded. It follows that

E[‖x̄(k)− x∗‖2] ≤ γk‖x̄(0)− x∗‖2+
k−1∑

s=0

γk−s−1(2αE[ε(s)] +α2ϕ2). (2.37)

From the expression ofε(k) in Lemma 2.3.3, we immediately obtain the following

inequality

E[ε(s)] ≤ 2ϕβ
√

Nηb s
mc+ 2αϕ2

√
Nm

1−η . (2.38)

The inequality

k−1∑

s=0

γk−1−sηb s
mc ≤ γk−1η−1

k−1∑

s=0





η
1
m

γ





s

= (γη)−1γ
k−η k

m

γ−η 1
m

yields
k−1∑

s=0

γk−s−1E[ε(s)] ≤ 2ϕβ
√

N
γη

γk−η k
m

γ−η 1
m

+
2αϕ2

√
Nm

1−η
1

1−γ, (2.39)

which combined with (2.37), generates the inequality (2.35). �

2.4 Main Results - Error bounds

In the following we provide upper bounds for two performancemetrics of the CB-

MASM. First, we give a bound on the difference between the best recorded value of the

cost function f , evaluated at the estimatexi(k), and the optimal valuef ∗. Second, we

focus on the second moment of the distance between the estimate xi(k) and the minimizer

of f ∗. For a particular class of twice differentiable functions, we give an upper bound

on this metric and show how fast the time varying part of this bound converge to zero.

The bounds we give in these section emphasize the effect of the random topology on the

performance metrics.
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The following result shows how close the cost functionf evaluated at the estimate

xi(k) gets to the optimal valuef ∗. A similar result for the standard sub-gradient method

can be found in [31], for example.

Corollary 2.4.1. Let Assumptions 2.2.1 and 2.2.2 or 2.2.1 and 2.2.3 hold and let {xi(k)}k≥0

be a sequence generated by the iteration (2.5), i= 1, . . .N. Let f̄ best
i (k)=mins=0...k E[ f (xi(s))]

be the smallest cost value (in average) achieved by agent i atiteration k. Then

lim
k→∞

f̄ best
i (k) ≤ f ∗+3αϕ2N

√
N

m
1−η +

Nαϕ2

2
. (2.40)

Proof. Using the subgradient definition offi at xi(k) we have that

fi(xi(k)) ≤ fi(x̄(k))+ϕ‖zi(k)‖, for all i = 1, . . . ,N.

Summing over alli, we get

f (xi(k)) ≤ f (x̄(k))+Nϕ‖z(k)‖,

which holds with probability one. Subtractingf ∗ from both sides of the above inequality,

and applying the expectation operator, we further get

E[ f (xi(k))] − f ∗ ≤ E[ f (x̄(k))] − f ∗+NϕE[‖z(k)‖],

or

f̄ best
i (k)− f ∗ ≤ min

s=0...k

{

E[ f (x̄(s))] − f ∗+NϕE[‖z(s)‖} . (2.41)

Let x∗ ∈ X∗ be an optimal point off . By (2.7), where we use a constant stepsizeα,

we obtain

‖x̄(k+1)− x∗‖2 = ‖x̄(k)− x∗− α
N

h(k)‖2 ≤ ‖x̄(k)− x∗‖2−2
α

N
h(k)′(x̄(k)− x∗)+α2ϕ2
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and since, by Lemma 2.3.3,h(x̄(k)) is aNε(k)-subdifferential of f at x̄(k), we have

‖x̄(k+1)− x∗‖2 ≤ ‖x̄(k)− x∗‖2− 2α
N

( f (x̄(k))− f ∗)+2αε(k)+α2ϕ2,

or

‖x̄(k)− x∗‖2 ≤ ‖x̄(0)− x∗‖2− 2α
N

k−1∑

s=0

( f (x̄(s))− f ∗)+2α
k−1∑

s=0

ε(s)+kα2ϕ2.

Since‖x̄(k)− x∗‖2 ≥ 0

2α
N

k−1∑

s=0

( f (x̄(s))− f ∗) ≤ ‖x̄(0)− x∗‖2+2α
k−1∑

s=0

ε(s)+kα2ϕ2,

or
k−1∑

s=0

(E[ f (x̄(s))] − f ∗) ≤ N
2α
‖x̄(0)− x∗‖2+N

k−1∑

s=0

E[ε(s)] +
kNαϕ2

2
.

Adding and subtractingNϕE[‖z(s)‖] inside the sum of the left-hand side of the above

inequality and recalling from Lemma 2.3.3 thatε(k) = 2ϕ‖z(k)‖, we obtain

k−1∑

s=0

(

E[ f (x̄(s))] − f ∗+NϕE[‖z(s)‖]) ≤ 1
2α
‖x̄(0)− x∗‖2+ 3N

2

k−1∑

s=0

E[ε(s)] +
kNαϕ2

2
.

Using the fact that

k−1∑

s=0

(E[ f (x̄(s))] − f ∗+NϕE[‖z(s)‖]) ≥ k min
s=0,...,k−1

{

E[ f (x̄(s))] − f ∗+NϕE[‖z(s)‖]} ,

we get

min
s=0,...,k−1

{

E[ f (x̄(s))] − f ∗+NϕE[‖z(s)‖]} ≤ 1
2αk
‖x̄(0)− x∗‖2+ 3N

2k

k−1∑

s=0

E[ε(s)] +
Nαϕ2

2
.

Using inequality (2.38) from Lemma 2.3.3 we obtain

k−1∑

s=0

E[ε(s)] ≤ 2ϕβ
√

N
m

1−η +k2αϕ2
√

N
m

1−η.
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It follows that

min
s=0,...,k−1

{

E[ f (x̄(s))] − f ∗+NϕE[‖z(s)‖]} ≤ 1
2αk
‖x̄(0)− x∗‖2+

+
3N
2k

(

2ϕβ
√

N
m

1−η +k2αϕ2
√

N
m

1−η

)

+
Nαϕ2

2
. (2.42)

Combining inequalities (2.41) and (2.42) and taking the limit, we obtain

lim
k→∞

f̄ best
i (k) ≤ f ∗+3αϕ2N

√
N

m
1−η +

Nαϕ2

2
.

�

In the case of twice differentiable functions, the next result introduces an error

bound which essentially says that the estimates “converge in the mean square sense to

within some guaranteed distance” from the optimal point, distance which can be made

arbitrarily small by an appropriate choice of the stepsize.In addition, the time varying

component of the error bound converges to zero at least linearly.

Corollary 2.4.2. Let Assumptions 2.2.1 and 2.2.3 hold. Then, for the sequence{xi(k)}k≥0

generated by iteration (2.5) we have

(a)

lim sup
k→∞

E[‖xi(k)− x∗‖2] ≤C1+C2+2
√

C1C2, (2.43)

where

C1 =
α2ϕ2

1−γ

(

4m
√

N
1−η +1

)

, C2 = Nα2ϕ2
(

1+ 2m
1−η

)
m

1−ρ .
(2.44)

(b)

E[‖xi(k)− x∗‖2] ≤ ψ(k)+C, (2.45)
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whereψ(k) = cδk with c a positive constant depending on the initial conditions,δ =

max{γ,η 1
m}, γ = 1−αl, and where C= 4max{C1,C2}.

Proof. By the triangle inequality we have

‖xi(k)− x∗‖2 ≤ ‖xi(k)− x̄(k)‖2+2‖xi(k)− x̄(k)‖‖x̄(k)− x∗‖+ ‖x̄(k)− x∗‖2.

or

E[‖xi(k)− x∗‖2] ≤ E[‖xi(k)− x̄(k)‖2] +2E[‖xi(k)− x̄(k)‖‖x̄(k)− x∗‖] +E[‖x̄(k)− x∗‖2].

By the Cauchy-Schwarz inequality for the expectation operator, we get

E[‖xi(k)− x∗‖2] ≤ E[‖xi(k)− x̄(k)‖2] +2E[‖xi(k)− x̄(k)‖2]
1
2 E[‖x̄(k)− x∗‖2]

1
2 +E[‖x̄(k)− x∗‖2].

(2.46)

Inequality (2.35) can be further upper bounded by

E[‖x̄(k)− x∗‖2] ≤ ψ1(k)+C1,

where

ψ1(k) =



‖x̄(0)− x∗‖2+ 8αϕβ
√

N
γη

1

γ−η 1
m





︸                                     ︷︷                                     ︸

c1

δk = c1δ
k,

with δ =max{γ,η 1
m} andC1 being given in (2.44). Using the inequalities

ρ

⌊
k−1
m

⌋

+1 ≤ ρ− 1
mρ

k
m and η

⌊
k−1
m

⌋

+1 ≤ η− 1
mη

k
m ,

from (2.26), a new bound forE[‖xi(k)− x̄(k)‖2] is given by

E[‖xi(k)− x̄(k)‖2] ≤ ψ2(k)+C2,
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whereC2 is given in (2.44) and

ψ2(k) =

[

Nβ2ρ−1+
2Nαβϕm
η−ρ

(

η−
1
m +ρ−

1
m

)]

︸                                       ︷︷                                       ︸

c2

δk = c2δ
k.

Taking the limit of (2.46) and recalling that under Assumptions 2.2.1 and 2.2.3,

γ < 1 andη
1
m < 1 for anym∈ Im, we obtain (2.43).

Inequality (2.46) can be further upper bounded by

E[‖xi(k)− x∗‖2] ≤ 2max{c1,c2}δk+2
(

max{c1,c2}δk+max{C1,C2}
)

= ψ(k)+C,

whereψ(k) = cδk, with c= 4max{c1,c2} andC = 4max{C1,C2}. Hence, we obtained that

the time varying component of the error bound converges linearly to zero with a factor

δ =max{γ,η 1
m}.

�

2.4.1 Discussion of the results

We obtained upper bounds on two performance metrics relevant to the CBMASM.

First we studied the difference between the cost function evaluated at the estimate and

the optimal solution (Corollary 2.4.1) - for non-differentiable and differentiable functions

with bounded (sub)gradients. Second, for a particular class of convex functions (see

Assumptions 2.2.3), we gave an upper bound for the second moment of the distance

between the estimates of the agents and the minimizer. We also showed that the time

varying component of this upper bound converges linearly tozero with a factor reflecting

the contribution of the random topology. We introduced Assumption 2.2.3 to cover part

of the class of convex functions for which uniform boundnessof the (sub)gradients can
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not be guaranteed.

From our results we can notice that the stepsize has a similarinfluence as in the

case of the standard subgradient method, i.e. a small value of α implies good precision

but slow rate of convergence, while a larger value ofα increases the rate of convergence

but at a cost in accuracy. More importantly, we can emphasizethe influence of the consen-

sus step on the performance of the distributed algorithm. When possible, by appropriately

designing the probability distribution of the random graph(together with an appropriate

choice of the integerm) we can improve the guaranteed precision of the algorithm (in-

tuitively, this means making the quantitiesm/(1−η) andm/(1−ρ) as small as possible).

In addition, the rate of convergence of the time varying component of the error bound

(2.45) can be improved by making the quantityη
1
m as small as possible. Note however

that there are limits with respect to the positive effect of the consensus step on the the rate

of convergence ofψ(k), since the latter is determined by the maximum betweenγ andη
1
m.

Indeed, if the stepsize is small enough, i.e.

α <
1
l
(1−η 1

m), (2.47)

then the rate of convergence ofψ(k) is given byγ. This suggests that having a fast con-

sensus step will not necessarily be helpful in the case of a small stepsize, which is in

accordance with the intuition on the role of a small value ofα. In the case inequality

(2.47) is not satisfied, the rate of convergence ofψ(k) is determined byη
1
m. However, this

does not necessarily means that the estimates will not “converge faster to within some

distance of the minimizer”, since we are providing only an error bound.

Assume that we are using the centralized subgradient methodto minimize the con-
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vex function f (x) =
∑N

i=1 fi(x) satisfying Assumption 2.2.2 (the subgradients offi(x) are

uniformly bounded byϕ), where the stepsize used isN times smaller than the stepsize of

the distributed algorithm, i.e.

x(k+1)= x(k)− α
N

d(k),

whered(k) is a subgradient off at x(k), with ‖d(k)‖ ≤ Nϕ. Then, from the optimization

literature we get

lim
k→∞

f best(k) ≤ f ∗+
Nαϕ2

2
,

where f best(k) =mins=0,...k f (x(s)). From above we note that, compared with the central-

ized subgradient method with a step sizeN times smaller than the agents’ stepsize, the

distributed optimization algorithm introduced an additional term in the error bound given

by 3αϕ2N
√

N m
1−η , which reflects the influence of the dimension of the network and of the

random topology on the guaranteed accuracy of the algorithm.

Let us now assume that we are minimizing the functionf (x), satisfying Assump-

tions 2.2.3-(a)(b), using a centralized gradient algorithm:

x(k+1)= x(k)− α
N
∇ f (x(k)),

where we have thatα is small enough (0< α < 2
L ) so that the algorithm is stable and there

exit ϕc so that‖∇ fi(x(k))‖ ≤ ϕc. It follows that we can get the following upper bound on

the distance between the estimate of the optimal decision vector and the minimizer

‖x(k)− x∗‖2 ≤ ‖x(0)− x∗‖2γk
c+

αϕ2
c

l
,

with γc = 1−αl. Therefore, we can see thatγ = γc which shows that the rates of conver-

gence, at which the time-varying components of the error bounds converge to zero in the
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centralized and distributed cases, are the same. However, please note that we assumed the

stepzise in the centralized case to beN times smaller than the stepsize used by the agents.

The error bounds (2.40) and (2.45) are functions of three quantities induced by the

consensus step:m1−η , m
1−ρ andη

1
m. These quantities show the dependence of the perfor-

mance metrics on the pmf ofG(k) and on the corresponding random matrixA(k). The

scalarsη andρ represent the first and second moments of the SLEM of the random ma-

trix A(k+1). . .A(k+m), corresponding to a random graph formed over a time interval of

lengthm, respectively. We notice from our results that the performance of the CBMASM

is improved by making m
1−η , m

1−ρ andη
1
m as small as possible, i.e. by optimizing these

quantities having as decision variablesm and the pmf ofG(k). For instance if we are

interested in obtaining a tight bound onE[‖xi(k)− x∗‖2] and having a fast decrease to zero

of ψ(k), we can formulate the following multi-criteria optimization problem:

minm,pi {η 1
m ,C1+C2+2

√
C1C2}

subject to: m≥ 1,

η
1
m ≥ γ,

∑M
i pi = 1, pi ≥ 0.

(2.48)

whereC1 andC2 were defined in (2.44). The second inequality constraint wasadded to

emphasize the fact that makingη
1
m too small is pointless, since that rate of convergence

of ψ(k) is limited byγ. If we are simultaneously interested in tightening the upper bounds

of both metrics, we can introduce the quantitym
1−η in the optimization problem sincem1−η

and m
1−ρ are not necessarily minimized by the same probability distribution. The solution

to the above problem is a set of Pareto points, i.e. solution points for which improvement

in one objective can only occur with the worsening of at leastone other objective.
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We note that for each fixed value ofm, the three quantities are minimized if the

scalarsη andρ are minimized as functions of the pmf of the random graph. An approxi-

mate solution of (2.48) can be obtained by focusing only on minimizing m
1−η , since both

η
1
m and m

1−ρ are upper bounded by this quantity. Therefore, an approximate solution can

be obtained by minimizingη (i.e. computing the optimal pmf) for each value ofm, and

then picking the best valuemwith the correspondingη that minimizes m
1−η . Depending on

the communication model used, the pmf of the random graph canbe a quantity dependent

on a set of parameters of the communication protocol (transmission power, probability of

collisions, etc) and therefore we can potentially tune these parameters so that the perfor-

mance of the CBMASM is improved.

In what follows we provide a simple example where we show howη, the optimal

probability distribution, m
1−η andη

1
m evolve as functions ofm.

Example 2.4.1.Let G(k) be a random graph process taking values in the setG= {G1,G2},with

probability p and1−p, respectively. The graphs G1 and G2 are shown in Figure 2.1. Also,

let A(k) be a (stochastic) random matrix , corresponding to G(k), taking value in the set

A = {A1,A2}, with

A1 =





1
2

1
2 0 0

1
2

1
4

1
4 0

0 1
4

3
4 0

0 0 0 1





, A2 =





1 0 0 0

0 1 0 0

0 0 2
3

1
3

0 0 1
3

2
3





Figure 2.2(a) shows the optimal probability p∗ that minimizesη for different values

of m. Figure 2.2(b) shows the optimizedη (computed at p∗) as a function of m. Figures

2.2(c) and 2.2(d) show the evolution of the optimizedm
1−η andη

1
m as functions of m, from
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Figure 2.1: The sample space of the random graphG(k)

where we notice that a Pareto solution is obtained for m= 5 and p∗ = 0.582.

In order to obtain the solution of problem (2.48), we need to compute the probability

of all possible sequences of lengthm produced byG(k), together with the SLEM of their

corresponding stochastic matrices. This task, for large values ofm andM may prove to

be numerically expensive. We can somewhat simplify the computational burden by using

the bounds onη andρ introduced in (2.16) and (2.17), respectively. Note that every result

concerning the performance metrics still holds. In this case, for each value ofm, the upper

bound onη is minimized, whenpm is maximized, which can be interpreted as having to

choose a pmf that maximizes the probability of connectivityof the union of random graph

obtained over a time interval of lengthm.

Even in the case where we use the bound onη, it may be very difficult to compute

the expression forpm, for large values ofm (the setG may allow for a large number

of possible unions of graphs that produce connected graphs). Another way to simplify

our problem even more, is to (intelligently) fix a value form and try to maximizepm

having as decision variable the pmf. We note thatm should be chosen such that, within

a time interval of lengthm, a connected graph can be obtained. Also, a very large value
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(a) (b)

(c) (d)

Figure 2.2: (a) Optimalp as a function ofm; (b) Optimizedη as a function ofm; (c)

Optimized m
1−η as a function ofm; (d) Optimizedη

1
m as a function ofm.
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for m should be avoided, sincem1−η is lower bounded bym. Although in general the

uniform distribution does not necessarily minimizeη, it becomes the optimizer under

some particular assumptions, stated in what follows. LetG be such that a connected

graph can be obtained only over a time interval of lengthM (i.e. in order to form a

connected graph, all graphs inGmust appear within a sequence of lengthM). ChooseM

as the value form. It follows thatpm can be expressed as:

pm=m!
M∏

i=1

pi .

We can immediately observe thatpm is maximized for the uniform distribution, i.e.pi =

1
m, for i = 1, . . . ,M.

2.5 Application - Distributed System Identification

In this section we show how the distributed optimization algorithm analyzed in the

previous section can be used to perform collaborative system identification. We assume

the following scenario: a group of sensors track an object bytaking measurements of

its position. These sensors have memory and computation capabilities and are organized

in a communication network modeled by a random graph processG(k) satisfying the

assumptions introduced in Section II. The task of the sensors/agents is to determine a

parametric model of the object’s trajectory. The measurements are affected by noise,

whose effect may differ from sensor to sensor (i.e. some sensors take more accurate

measurements than others). This can happen for instance when some sensors are closer to

the object than other (allowing a better reading of the position), or sensors with different

precision classes are used. Determining a model for the timeevolution of the object’s
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position can be useful in motion prediction when the motion dynamics of the object in

unknown to the sensors. The notations used in the following are independent from the

ones used in the previous sections.

2.5.1 System identification model

Let p(t)′ = [x(t),y(t),z(t)] be the position vector of the tracked object. We model the

time evolution of each of the axis of the position vector as a time dependent polynomial

of degreena, i.e.

x(t) = ax
0+ax

1t+ . . .+ax
na

tna,

y(t) = ay
0+ay

1t+ . . .+ay
nat

na,

z(t) = az
0+az

1t+ . . .+az
na

tna.

(2.49)

The measurements of each sensori are given by

xi(t) = x(t)+ei,x(t),

yi(t) = y(t)+ei,y(t),

zi(t) = z(t)+ei,z(t),

(2.50)

whereei,x(t), ei,y(t) andei,y(t) are assumed white noises of (unknown) variancesσ2
i,x, σ

2
i,y

andσ2
i,z respectively. Equivalently, we have

xi(t) = ϕ(t)′θx+ei,x(t),

yi(t) = ϕ(t)′θy+ei,y(t),

zi(t) = ϕ(t)′θz+ei,z(t),

(2.51)

whereϕ(t)′ = [1, t, . . . , tna] andθx= [a0,x, . . . ,ana,x]
′, θy= [a0,y, . . . ,ana,y]

′ andθz= [a0,z, . . . ,ana,z]
′.

In the following we focus only on one coordinate of the position vector, sayx(t).

The analysis, however can be mimicked in a similar way for theother two coordinates. Let
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T be the total number of measurements taken by the sensors and consider the following

quadratic cost functions

Ji(θx) =
T∑

t=1

(xi(t)−ϕ(t)′θx)
2, ∀i.

Using its own measurements, sensori can determine a parametric model for the time

evolution of the coordinatex(t) by solving the optimization problem:

min
θx
Ji(θx). (2.52)

LetX′i = [xi(1), . . . , xi(T)] be the vector of measurements of sensori and letΦ′ = [ϕ(1), . . . ,ϕ(T)]

be the matrix formed by the regression vectors. It is well known that the optimal solution

of (2.52) is given by

θ̂i,x =
(

Φ′Φ
)−1
Φ′X i . (2.53)

Remark 2.5.1. It can be shown thatΦ′Φ is invertible for any T, but it becomes ill con-

ditioned for large values of T. That is why, for our numericalsimulations, we will in fact

use an orthogonal basis to model the time evolution of the coordinates x(t), y(t), and z(t).

Performing a localized system identification does not take into account the mea-

surements of the other sensors, which can potentially enhance the identified model. If all

the measurements are centralized, a model for the time evolution of x(t) can be computed

by solving

min
θx
J(θx),

where

J(θx) =
N∑

i=1

Ji(θx). (2.54)
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Note that (2.54) fits the framework of the distributed optimization problem formulated in

the previous sections, and therefore can be solved distributively, eliminating the need for

sharing all measurements with all other sensors.

Remark 2.5.2. If each sensor has a priori information about its accuracy, then the cost

function (2.54) can be replaced with

J(θx) =
N∑

i=1

δi,xJi(θx), (2.55)

whereδi,x is a positive scalar such that the more accurate sensor i is, the largerδi is. The

scalarδi,x can be interpreted astrust in the measurements taken by sensor i. The sensors

can use local identification to computeδi,x. For instance,δi,x can be chosen asδi,x =
1
σ̂2

i,x
,

whereσ̂2
i,x is given by

σ̂2
i,x =

1
T

T∑

t=1

(xi(t)−ϕ(t)′θ̂i,x)
2,

whereθ̂i,x is the local estimate of the model for the time evolution of x(t).

The distributed optimization algorithm (2.5) can be written as

θi,x(k+1)=
N∑

j=1

ai j (k)θ j,x(k)−α∇Ji(k), (2.56)

where∇Ji(k) = −2Φ′(X i −Φθi,x(k)).

2.5.2 Numerical simulations

In this section we simulate the distributed system identification algorithm under two

gossip communication protocols: the randomized gossip protocol [7] and the broadcast

gossip protocol [1]. We perform the simulations on a circular graph, where we assume
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that the cardinality of the neighborhoods of the nodes is two. This graph is a particular

example of small world graphs [53] (for an analysis of the consensus problem under small

world like communication topologies, the reader can consult [3] for example).

Figure 2.3: Circular graph withN = 8

In the case of the randomized gossip protocol, the set of consensus matrices is given

by

Ar = {Ai j , i = 1. . .N, j ∈ {i −1, i +1}},

whereAi j = I − 1
2(ei −ej)(ei −ej)′ and where by convention we assume that ifi = N then

i +1 = 1 and if i = 1 theni −1 = N. We assume that if nodei wakes up, it chooses with

uniform distribution between its two neighbors. Hence the probability distribution of the

random matrixA(k) is given by

Pr(A(k) = Ai j ) =
1

2N
.

We note that the minimum value ofmsuch thatηm< 1 isN−1. Recall thatm is the length
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of a time interval such thatPr
(⋃m−1

l=0 G(k+ l)
)

> 0 for anyk. It turns out that form= N−1

pr
c = Pr





N−2⋃

l=0

G(k+ l)




= N!

(

1
2N

)N−1

Interestingly, the matrix products of lengthN−1 of the form
∏N−1

i=1 Ai+i0,i+1+i0 with i0 ∈

{0, . . . ,N− 1}, and the matrix products that may be obtained by the permutations of the

matrices in the aforementioned matrix products, have the same SLEM (where the sum-

mations in the indices are seen as moduloN). In fact it is exactly this property that allows

us to give the following explicit expression forηN−1

ηr
N−1 = pr

cλ
r +1− pr

c, (2.57)

whereλr is the SLEM of the matrix productA1,2A2,3 · · ·AN−1,N.

In the case of the broadcast gossip protocol, the setA is given by

Ab = {Ai , i = 1. . .N},

whereAi = I − 1
3
[

(ei −ei+1)(ei −ei+1)′+ (ei −ei−1)(ei −ei−1)′
]

andPr(A(k) = Ai) = 1
N . For

odd values ofN (and N ≥ 3), the minimum value ofm such thatηm < 1 is given by

m= N−1
2 . In addition, we have that

pb
c = Pr





N−3
2⋃

l=0

G(k+ l)





= N

(

N−1
2

)

!

(

1
N

)N−1
2

.

Observing a similar phenomenon as in the case of the randomized gossip protocol, namely

that the matrix productsA1+i0A3+i0 . . .AN−2+i0 for i0 ∈ {0, . . .N−1} and their permutations

have the same SLEM (where as before the summations of indicesare seen as moduloN),

we obtain the formula

ηb
N−1

2
= pb

cλ
b+1− pb

c,
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whereλb is the SLEM of the matrix productA1A3 · · ·AN−2.

The values forηr
N−1 andηb

N−1
2

computed above, in the case of the two gossip pro-

tocols, do not necessarily provide tight error bounds, since we considered minimal time

interval lengths so thatηm < 1. Even for this relatively simple type of graph, analytical

formulas forηm, for large values ofm, are more difficult to obtain due to an increase in

combinatorial complexity and because different matrix products that appear in the expres-

sion ofη do not necessarily have the same SLEM. However, we did compute numerical

estimates for different values ofm. Figures 4 and 5 show estimates of the three quantities

of interest,η, m
1−η andη

1
m, as functions ofm, for N = 11 (the estimates were computed by

taking averages over 2000 realizations and are shown together with the 95% confidence

intervals). We can see thatm1−η is minimized form≈ 55 in the case of the randomized

gossip protocol and form≈ 30 in the case of the broadcast gossip protocol, while the

best achievableη
1
m are approximately equal for the two protocols, (i.e. 0.985. for the

randomized gossip protocols and 0.982 for the broadcast gossip protocols).

Next we present numerical simulations of the distributed system identification al-

gorithm presented in the previous subsection, under the randomized and broadcast gossip

protocols. We would like to point out that, in order to maintain numerical stability, in our

numerical simulation we used an orthogonalized version ofΦ, given byΦ̃ = ΦH, where

Φ̃’s columns form an orthogonal basis of the range ofΦ, and the new vector of the param-

eters is giveñθ = Hθ, whereH is a linear transformation matrix, whose entries depend on

the orthogonalization process used (Gram-Schmidt, Householder transformations, etc.).
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Therefore, the cost function we are minimizing can be rewritten as

J(θ̃x) =
n∑

i=1

Ji(θ̃x),

whereJi(θ̃x) =
∥
∥
∥X i − Φ̃θ̃x

∥
∥
∥

2
.

It is easy to check that in the case of the two protocols,λ (the smallest of all eigen-

values of matrices belonging to the setA) is zero. In addition, Assumption 2.2.3-(a)(b)

are satisfied forl i = Li = 2, and forα < 1
2 the distributed optimization algorithm is guar-

anteed to be stable with probability one (recall Lemma 2.3.1). From above we see that

η
1
m can not attain less than 0.98 for both protocols, for anym. Therefore, although we can

chooseα > 0.01 which in turn impliesγ < 0.98, our analysis cannot guarantee a rate of

convergence forψ(k) smaller than 0.98, since the rate of convergence is upper bounded

by the maximum betweenγ andη
1
m. However, this does not mean that faster rates of

convergence can not be achieved, which in fact is shown in ournumerical simulations.

Figures 6 and 7 present numerical simulations of the distributed system identifica-

tion algorithm for the two protocols and for a circular graphwith N = 11. In our numerical

experiments we considered a numberT = 786 of measurements of thex-coordinate of the

trajectory depicted in Figure 2.6. We assumed that thex-coordinate measurements are

affected by white, Gaussian noise with a signal-to-noise ration given byS NRi = 5× i dB,

for i = 1. . .11. The time polynomials modeling the trajectory evolutionare chosen of

degree ten, i.e.na = 10. We plot estimates of two metrics: maxi E[‖θ̃i,x(k)− θ̃∗‖] and

maxi E[ f (θ̃i,x(k))] − f ∗ for different values ofα (the estimates were computed by taking

averages over 500 realizations). We note that for larger values ofα, under the two proto-

cols, the algorithm has roughly the same rate of convergence, but the broadcast protocol
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Figure 2.7: Estimate of maxi E[‖θ̃i,x(k)− θ̃∗‖] for the randomized and broadcast protocol
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Chapter 3

Distributed Asymptotic Agreement Problem on Convex MetricSpaces

3.1 Introduction

A convex metric space is a metric space endowed with a convex structure. In this

chapter we generalize the asymptotic consensus problem to the more general case of

convex metric spaces and emphasize the fundamental role of convexity and in particular

of the convex hull of a finite set of points. Tsitsiklis showedin [51] that, under some

minimal connectivity assumptions on the communication network, if an agent updates

its value by choosing a point (inRn) from the (interior) of the convex hull of its current

value and the current values of its neighbors, then asymptotic convergence to consensus

is achieved. We will show that this idea extends naturally tothe more general case of

convex metric spaces.

Our main contributions are as follows.First, after citing relevant results concerning

convex metric spaces, we study the properties of the distance between two points belong-

ing to two, possibly overlapping convex hulls of two finite sets of points. These properties

will prove to be crucial in proving the convergence of the agreement algorithm.Second,

we provide a dynamic equation for an upper bound of the vectorof distances between the

current values of the agents. We show that the agents asymptotically reach agreement,

by showing that this upper bound asymptotically converges to zero.Third, we character-

ize the agreement point(s) compared to the initial values ofthe agents, be giving upper
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bounds on the distance between the agreement point(s) and the initial values in terms of

the distances between the initial values of the agents.Forth, we emphasize the relevance

of our framework, by providing an application under the formof a consensus of opinion

algorithm. For this example we define a particular convex metric space and we study in

more depth the properties of the convex hull of a finite set of points.

The chapter is organized as follows. Section 3.2 introducesthe main concepts re-

lated to the convex metric spaces and focuses in particular on the convex hull of a finite

set. Section 3.3 formulates the problem and states our main theorem. Section 3.4 gives

the proof of our main theorem together with some auxiliary results. In Section 3.6 we

present an application of our main result by providing an iterative algorithm for reaching

consensus of opinion.

Some basic notations:GivenW∈Rn×n by [W] i j we refer to the (i, j) element of the

matrix. Theunderlying graphof W is a graph of ordern for which every edge corresponds

to a non-zero, non-diagonal entry ofW. We will denote by1{A} the indicator function of

eventA. Given some spaceX we denote byP(X) the set of all subsets ofX.

3.2 Convex Metric Spaces

The first part of this section deals with a set of definitions and basic results about

convex metric spaces. The second part focuses on the convex hull of a finite set in convex

metric spaces.
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3.2.1 Definitions and Results on Convex Metric Spaces

For more details about the following definitions and resultsthe reader is invited to

consult [46],[49].

Definition 3.2.1. Let (X,d) be a metric space. A mappingψ : X×X× [0,1]→X is said

to be aconvex structureonX if

d(u,ψ(x,y,λ)) ≤ λd(u, x)+ (1−λ)d(u,y), ∀x,y,u ∈ X and∀λ ∈ [0,1]. (3.1)

Definition 3.2.2. The metric space(X,d) together with the convex structureψ is called a

convex metric space.

A Banach space and each of its subsets are convex metric spaces. There are ex-

amples of convex metric spaces not embedded in any Banach space. The following two

examples are taken from [49].

Example 3.2.1.Let I be the unit interval[0,1] andX be the family of closed intervals

[ai ,bi ] such that0 ≤ ai ≤ bi ≤ 1. For Ii = [ai ,bi], I j = [a j ,b j ] and λ ∈ I, we define a

mappingψ byψ(I i , I j ,λ) = [λai + (1−λ)a j ,λbi + (1−λ)b j ] and define a metric d inX by

the Hausdorff distance, i.e.

d(I i , I j) =max{|ai −a j |, |bi −b j |}.

Example 3.2.2.We consider a linear space L which is also a metric space with the fol-

lowing properties:

(a) For x,y ∈ L, d(x,y) = d(x−y,0);
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(b) For x,y ∈ L andλ ∈ [0,1],

d(λx+ (1−λ)y,0)≤ λd(x,0)+ (1−λ)d(y,0).

Hence L, together with the convex structureψ(x,y,λ) = λx+ (1−λ)y, is a convex metric

space.

Definition 3.2.3. LetX be a convex metric space. A nonempty subset K⊂ X is said to be

convexif ψ(x,y,λ) ∈ K, ∀x,y ∈ K and∀λ ∈ [0,1].

We define the set valued mappingψ̃ : P(X)→P(X) as

ψ̃(A) , {ψ(x,y,λ) | ∀x,y ∈ A,∀λ ∈ [0,1]}, (3.2)

whereA is an arbitrary set inX.

In [49] it is shown that, in a convex metric space, an arbitrary intersection of convex

sets is also convex and therefore the next definition makes sense.

Definition 3.2.4. Theconvex hullof the set A⊂ X is the intersection of all convex sets in

X containing A and is denoted by co(A).

Another characterization of the convex hull of a set inX is given in what follows.

By definingAm , ψ̃(Am−1) with A0 = A for someA ⊂ X, it is discussed in [46] that the

set sequence{Am}m≥0 is increasing and limsupAm exists, and limsupAm = liminf Am =

lim Am=
⋃∞

m=0 Am.

Proposition 3.2.1([46]). LetX be a convex metric space. The convex hull of a set A⊂ X

is given by

co(A) = lim Am=

∞⋃

m=0

Am. (3.3)

It follows immediately from above that ifAm+1 = Am for somem, thenco(A) = Am.
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3.2.2 On the convex hull of a finite set

For a positive integern, let A = {x1, . . . , xn} be a finite set inX with convex hull

co(A) and letzbelong toco(A). By Proposition 3.2.1 it follows that there exists a positive

integermsuch thatz∈ Am. But sinceAm= ψ̃(Am−1) it follows that there exitsz1,z2 ∈ Am−1

andλ(1,2) ∈ [0,1] such thatz= ψ(z1,z2,λ(1,2)). Similarly, there exitsz3,z4,z5,z6 ∈ Am−2

andλ(3,4),λ5,6 ∈ [0,1] such thatz1 = ψ(z3,z4,λ(3,4)) andz2 = ψ(z5,z6,λ(5,6)). By further

decomposingz3,z4,z5 andz6 and their followers until they are expressed as functions of

elements ofA and using a graph theory terminology, we note thatz can be viewed as the

root of a weighted binary tree with leaves belonging to the set A. Each nodeα (except the

leaves) has two childrenα1 andα2, and are related through the operatorψ in the sense

α = ψ(α1,α2,λ) for someλ ∈ [0,1]. The weights of the edges connectingα with α1 and

α2 are given byλ and 1−λ respectively.

From the above discussion we note that for any pointz∈ co(A) there exits a non-

negative integerm such thatz is the root of a binary tree of heightm, and has as leaves

elements ofA. The binary tree rooted atz may or may not be aperfect binary tree, i.e.

a full binary tree in which all leaves are at the same depth. That is because on some

branches of the tree the points inA are reached faster then on others. Letni denote the

number of timesxi appears as a leaf node, with
∑n

i=1ni ≤ 2m and letmi l be the length of

the ithl path from the rootz to the nodexi , for l = 1. . .ni . We formally describe the paths

from the rootz to xi as the set

Pz,xi ,

{(

{yi l , j}
mil
j=0, {λi l , j}

mil
j=1

)

| l = 1. . .ni

}

, (3.4)

where{yi l j}
mil
j=0 is the set of points forming thei l th path, withyi l ,0 = z andyi l ,mil

= xi and
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where{λi l , j}
mil
j=1 is the set of weights corresponding to the edges along the paths, in partic-

ularλi l , j being the weight of the edge (yi l , j−1,yi l , j). We define the aggregate weight of the

paths from rootz to nodexi as

W(Pz,xi ) ,
ni∑

l=1

mil∏

j=1

λi l , j . (3.5)

It is not difficult to note that all the aggregate weights of the paths from the rootz

to the leaves{x1, . . . , xn} sum up to one, i.e.

n∑

i=1

W(Pz,xi ) = 1.

Figure 3.1: The decomposition of a pointz∈ A3 with A= {x1, x2, x3}

Example 3.2.3.Figure 3.1 shows a binary tree corresponding to a point z∈ A3, where

A= {x1, x2, x3}. For this particular example, the paths from to root z to the leaves xi are

given by

Pz,x1 =
{({z,z1,z3, x1}, {λ(1,2),λ(3,4),λ(7,8)}

)
,
({z,z1,z4, x1}, {λ(1,2), (1−λ(3,4)),λ(9,10)}

)
,
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({z,z2,z5, x1}, {(1−λ(1,2)),λ(5,6),λ(11,12)}
)

,
({z,z2,z6, x1}, {(1−λ(1,2)), (1−λ(5,6)),λ(13,14)}

)}

,

Pz,x2 =
{({z,z1,z3, x2}, {λ(1,2),λ(3,4), (1−λ(7,8))}

)}

Pz,x3 =
{({z,z1,z4, x3}, {λ(1,2), (1−λ(3,4)), (1−λ(9,10))}

)
,
({z,z2,z5, x3}, {(1−λ(1,2)),λ(5,6), (1−λ(11,12))}

)
,

({z,z2,z6, x3}, {(1−λ(1,2)), (1−λ(5,6)), (1−λ(13,14))}
)}

and the path weights are

W(Pz,x1) = λ(1,2)λ(3,4)λ(7,8)+λ(1,2)(1−λ(3,4))λ(9,10)+ (1−λ(1,2)),λ(5,6),λ(11,12),

W(Pz,x2) = λ(1,2)λ(3,4)(1−λ(7,8)),

W(Pz,x3)= λ(1,2)(1−λ(3,4))(1−λ(9,10))+(1−λ(1,2))λ(5,6)(1−λ(11,12))+(1−λ(1,2))(1−λ(5,6))(1−λ(13,14)).

Definition 3.2.5. Given a small enough positive scalarε < 1 we define the following sub-

set of co(A) consisting of all points in co(A) whose aggregate weights are lower bounded

byε, i.e.

coε(A) , {z | z∈ co(A),W(Pz,xi ) ≥ ε, ∀xi ∈ A}. (3.6)

Remark 3.2.1. By a small enoughvalue ofε we understand a value such that the in-

equalityW(Pz,xi ) ≥ ε is satisfied for all i. Obviously, for n agentsε needs to satisfy

ε ≤ 1
n
,

but usually we would want to choose a value much smaller then1/n since this implies a

richer set coε(A).

Remark 3.2.2. We can iteratively generate points for which we can make surethat they

belong to the interior of the convex hull of a finite set A= {x1, . . . , xn}. Given a set of

positive scalars{λ1, . . . ,λn−1} ∈ (0,1), consider the iteration

yi+1 = ψ(yi , xi+1,λi) for i = 1. . .n−1 with y1 = x1. (3.7)
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It is not difficult to note that yn is guaranteed to belong to the interior of co(A). In addition,

if we impose the condition

ε
1

n−1 ≤ λi ≤
1− (n−1)ε
1− (n−2)ε

, i = 1. . .n−1, (3.8)

andε respects the inequality

ε
1

n−1 ≤ 1− (n−1)ε
1− (n−2)ε

, (3.9)

then yn ∈ coε(A). We should note that for any n≥ 2 we can find a small enough value ofε

such that inequality (3.9) is satisfied.

The next result characterizes the distance between two points x,y ∈ X belonging to

the convex hulls of two (possibly overlapping) finite setsX andY.

Proposition 3.2.2.Let X= {x1, . . . , xnx} and Y= {y1, . . . ,yny} be two finite sets onX and

let ε < 1 be a positive scalar small enough.

(a) If x ∈ co(X) and y∈ X then

d(x,y) ≤
nx∑

i=1

λid(xi ,y), (3.10)

for someλi ≥ 0 with
∑nx

i=1λi = 1.

(b) If x ∈ co(X) and y∈ co(Y) then

d(x,y) ≤
nx∑

i=1

ny∑

j=1

λi j d(xi ,y j), (3.11)

for someλi j ≥ 0 with
∑nx

i=1

∑ny

j=1λi j = 1.

(c) If x ∈ coε(X), y∈ coε(Y), then

λi ≥ ε andλi j ≥ ε2, ∀ i, j, (3.12)

whereλi andλi j where introduced in part (a) and part (b), respectively.
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(d) If x ∈ coε(X), y∈ coε(Y) and X∩Y, ∅, then

nx∑

i=1

ny∑

j=1

λi j1{d(xi ,y j),0} ≤ 1−ε2, (3.13)

whereλi j were introduced in part (b).

Proof. (a) Mimicking the idea introduced at the beginning of this section, sincex∈ co(X)

it follows that there exists a positive integermsuch thatz∈ Xm, whereXm+1 = ψ̃(Xm) with

X0 = X. Further, there existz1,z2 ∈ Xm−1 andλ12 ∈ [0,1] such thatz=ψ(z1,z2,λ12). Using

the definition of the convex structure, it follows that the distance betweenz andy can be

upper bounded by

d(x,y) ≤ λ12d(z1,y)+ (1−λ12)d(z2,y).

Inductively decomposingz1,z2 and theirchildren, it can be easily argued that

d(x,y) ≤
nx∑

i=1

λid(xi ,y),

for some positive weightsλi ≥ 0 summing up to one.

(b) To obtain (3.11) we proceed as in part (a) and obtain upperbounds ond(xi ,y).

More precisely we get that

d(xi ,y) ≤
ny∑

j=1

µ jd(xi ,y j), ∀i,

with µ j > 0 and
∑ny

j=1µ j = 1, and it follows that

d(x,y) ≤
nx∑

i=1

ny∑

j=1

λi j d(xi ,y j),

whereλi j = λiµ j ≥ 0 and
∑nx

i=1

∑ny

j=1λi j = 1.

(c) We note thatλi =W(Px,xi ) andµ j =W(Py,y j ), ∀i, j. But sincex ∈ coε(X) and

y ∈ coε(Y) it immediately follows thatλi ≥ ε andµ j ≥ ε, and thereforeλi j = ε
2.
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(d) If X∩Y , ∅ then there exists at least one pair (i, j) such thatd(xi,y j) = 0. But

sinceλi j ≥ ε2 the inequality (3.13) follows. �

3.3 Problem formulation and statement of the main result

We consider a convex metric space (X,d) and a set ofn agents indexed byi which

take values onX. Denoting byk the time index, the agents exchange information based on

a communication network modeled by a time varying graphG(k) = (V,E(k)), whereV is

the finite set of vertices (the agents) andE(k) is the set of edges. An edge (communication

link) ei j (k) ∈ E(k) exists if nodei receives information from nodej. Each agent has

an initial value inX. At each subsequent time-slot is adjusting its value based on the

observations about the values of its neighbors. The goal of the agents is to asymptotically

agree on the same value. In what follows we denote byxi(k) ∈ X the value orstateof

agenti at timek.

Definition 3.3.1. We say that the agents asymptotically reachconsensus(or agreement)

if

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i, j, i , j. (3.14)

Similar to the communication models used in [52], [4], [34],we impose minimal as-

sumptions on the connectivity of the communication graphG(k). Basically these assump-

tion consists of having the communication graph connectedinfinitely oftenand having

bounded intercommunication intervalbetween neighboring nodes.

Assumption 3.3.1(Connectivity). The graph(V,E∞) is connected, where E∞ is the set of
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edges(i, j) representing agent pairs communicating directly infinitely many times, i.e.,

E∞ = {(i, j) | (i, j) ∈ E(k) for infinitely many indices k}

Assumption 3.3.2(Bounded intercommunication interval). There exists an integer B≥ 1

such that for every(i, j) ∈ E∞ agent j sends its information to the neighboring agent i at

least once every B consecutive time slots, i.e. at time k or attime k+1 or . . . or (at latest)

at time k+B−1 for any k≥ 0.

Assumption 3.3.2 is equivalent to the existence of an integer B≥ 1 such that

(i, j) ∈ E(k)∪E(k+1)∪ . . .∪E(k+B−1), ∀(i, j) ∈ E∞ and∀k.

Let Ni(k) denote the communication neighborhood of agenti, which contains all

nodes sending information toi at timek, i.e. Ni(k) = { j | ei j (k) ∈ E(k)} ∪ {i}, which by

convention contains the nodei itself. We denote byAi(k) , {x j(k),∀ j ∈ Ni(k)} the set of

the states of agenti’s neighbors (its own included), and byA(k) , {xi(k), i = 1. . .n} the set

of all states of the agents.

The following theorem states our main result regarding the asymptotic agreement

problem on metric convex space.

Theorem 3.3.1.Let Assumptions 3.3.1 and 3.3.2 hold for G(k) and letε < 1 be a positive

scalar sufficiently small. If agents update their state according to thescheme

xi(k+1) ∈ coε(Ai(k)), ∀i, (3.15)

then they asymptotically reach consensus, i.e.

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i, j, i , j. (3.16)
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Remark 3.3.1.We would like to point out that the result refers strictly to the convergence

of the distances between states and not to the convergence ofthe states themselves. It

may be the case that the sequences{xi(k)}k≥0 i = 1. . .n do not have a limit and still the

distances d(xi(k), x j(k)) decrease to zero as k goes to infinity. In other words the agents

asymptotically agree on the same value which may be very wellvariable. However, as

stated in the next corollary this is not the case and in fact the states of the agents do

converge to the same value.

Corollary 3.3.1. Let Assumptions 3.3.1 and 3.3.2 hold for G(k) and letε < 1 be a positive

scalar sufficiently small. If agents update their state according to thescheme

xi(k+1) ∈ coε(Ai(k)), ∀i, (3.17)

then there exists x∗ ∈ X such that

lim
k→∞

d(xi(k), x∗) = 0, ∀i. (3.18)

We will give the proofs for both Theorem 3.3.1 and Corollary 3.3.1 in the subse-

quent section.

Remark 3.3.2.A procedure for generating points that are guaranteed to belong to coε(Ai(k))

is described in Remark 3.2.2. The idea of picking xi(k+ 1) from coε(Ai(k)) rather than

co(Ai(k)) is in the same spirit of the assumption imposed on the non-zero consensus

weights in [51], [34], [4], i.e. they are assumed lower bounded by a positive, sub-

unitary scalar. Setting xi(k+ 1) ∈ co(Ai(k)) may not necessarily guarantee asymptotic

convergence to consensus. Indeed, consider the case whereX = R with the standard

Euclidean distance. A convex structure onR is given byψ(x,y,λ) = λx+ (1− λ)y, for
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any x,y ∈ R and λ ∈ [0,1]. Assume that we have two agents which exchange informa-

tion at all time slots and therefore A1(k) = {x1(k), x2(k)}, A2(k) = {x1(k), x2(k)}, ∀k ≥ 0.

Let x1(k+ 1) = λ(k)x1(k)+ (1− λ(k))x2(k), whereλ(k) = 1− 0.1e−k and let x2(k+ 1) =

µ(k)x1(k)+ (1−µ(k))x2(k), whereµ(k) = 0.1e−k. Obviously, xi(k+1) ∈ co(Ai(k)), i = 1,2

for all k ≥ 0. It can be easily argued that

d(x1(k+1), x2(k+1))≤ (λ(k)(1−µ(k))+µ(k)(1−λ(k)))d(x1(k, x2(k))). (3.19)

We note thatlimK→∞
∏K

k=0 (λ(k)(1−µ(k))+ (1−λ(k))µ(k)) = limK→∞
∏K

k=0(1− 0.2e−k+

0.02e−2k) = 0.73 and therefore under inequality (3.19) asymptotic convergence to con-

sensus is not guaranteed. In fact it can be explicitly shown that the agents do not reach

consensus. From the dynamic equation governing the evolution of xi(k), i = 1,2, we can

write

x(k+1)=





λ(k) 1−λ(k)

µ(k) 1−µ(k)





x(k), x(0)= x0,

wherex(k)T = [x1(k), x2(k)], and we obtain that

lim
k→∞

x(k) =





0.8540 0.1451

0.1451 0.8540





x0

and therefore it can be easily seen that consensus is not reached from any initial states.

3.4 Proof of the main result

This section is divided in three parts. In the first part we usethe results of Section

3.2.2 regarding the convex hull of a finite set and show that the entries of the vector

of distances between the states of the agents at timek+ 1 are upper bounded by linear
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combinations of the entries of the same vector but at timek. The coefficients of the linear

combinations are the entries of a time varying matrix for which we prove a number of

properties (Lemma 3.4.1). In the second part we analyze the properties of the transition

matrix of the aforementioned time varying matrix (Lemma 3.4.2). The last part is reserved

to the proof of Theorem 3.3.1.

Lemma 3.4.1. Given a small enough positive scalarε < 1, assume that agents update

their states according to the scheme xi(k+1)∈ coε(Ai(k)), for all i. Let d(k), (d(xi(k), x j(k)))

for i , j be the N dimensional vector of all distances between the states of the agents,

where N= n(n−1)
2 . Then we obtain that

d(k+1)≤W(k)d(k), d(0)= d0, (3.20)

where the N×N dimensional matrixW(k) has the following properties:

(a) W(k) is non-negative and there exits a positive scalarη ∈ (0,1) such that

[W(k)] ī ī ≥ η, ∀ ī,k (3.21)

[W(k)] ī j̄ ≥ η, ∀ [W(k)] ī j̄ , 0, ī , j̄, ∀ k. (3.22)

(b) IfNi(k)∩N j(k), ∅, then the row̄i of matrixW(k), corresponding to the pair of agents

(i, j), has the property
N∑

j̄=1

[W(k)] ī j̄ ≤ 1−η, (3.23)

whereη is the same as in part (a).

(c) If Ni(k)∩N j(k) = ∅ then the row̄i corresponding to the pair of agents(i, j) sums up
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to one, i.e.
N∑

j̄=1

[W(k)] ī j̄ = 1. (3.24)

In particular if G(k) is completely disconnected (i.e. agents do not send any informa-

tion), thenW(k) = I.

(d) the rows ofW(k) sum up to a value smaller or equal then one, i.e.

N∑

j̄=1

[W(k)] ī j̄ ≤ 1, ∀ ī,k. (3.25)

Proof. Given two agentsi and j, by part (b) of Proposition 3.2.2 the distance between

their states can be upper bounded by

d(xi(k+1), x j(k+1))≤
∑

p∈Ni(k),q∈N j (k)

wi j
pq(k)d(xp(k), xq(k)), i , j, (3.26)

wherewi j
pq(k)≥ 0 and

∑

p∈Ni(k),q∈N j (k) wi j
pq(k)= 1. By definingW(k), (wi j

pq(k)) for i , j and

p, q (where the pairs (i, j) and (p,q) refer to the rows and columns ofW(k), respectively),

inequality (3.20) follows. We continue with proving the properties of matrixW(k).

(a) Since allwi j
pq(k) ≥ 0 for all i , j, p ∈ Ni(k) andq ∈ N j(k) we obtain thatW(k) is

non-negative. By part (c) of Proposition 3.2.2, there existsη , ε2 such thatwi j
pq(k) ≥ η for

all non-zero entries ofW(k). Also, sincei ∈ Ni(k) and j ∈ N j(k) for all k ≥ 0 it follows

that the termwi j
i j (k)d(xi(k), x j(k)), with wi j

i j (k) ≥ η will always be present in the right-hand

side of the inequality (3.26), and thereforeW(k) has positive diagonal entries.

(b) Follows from part (d) of Proposition 3.2.2, withη = ε2.

(c) If Ni(k)∩N j(k) = ∅ then no terms of the formwi j
pp(k)d(xp(k), xp(k)) will appear

in the sum of the right hand side of inequality (3.26). Hence
∑

p∈Ni (k),q∈N j (k) wi j
pq(k) = 1
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and therefore
N∑

j̄=1

[W(k)] ī j̄ = 1.

If G(k) is completely disconnected, then the sum of the right hand side of inequality (3.26)

will have only the termwi j
i j (k)d(xi(k), x j(k)) with wi j

i j (k) = 1, for all i, j = 1. . .n. Therefore

W(k) is the identity matrix.

(d) The result follows from parts (b) and (c). �

Let Ḡ(k)= (V̄, Ē(k)) be the underlying graph ofW(k) and let̄i and j̄ refer to the rows

and columns ofW(k), respectively. Note the under this notation, indexī corresponds to a

pair (i, j) of distinct agents. It is not difficult to see that the set of edges ofḠ(k) is given

by

Ē(k) = {((i, j), (p,q)) | (i, p) ∈ E(k), ( j,q) ∈ E(k), i , j, p, q} . (3.27)

Proposition 3.4.1.Let Assumptions 3.3.1 and 3.3.2 hold for G(k). Then, similar proper-

ties hold forḠ(k) as well, i.e.

(a) the graph(V̄, Ē∞) is connected, where

Ē∞ = {(ī, j̄) | (ī, j̄) ∈ Ē(k) infinetly many indices k};

(b) there exists an integer̄B ≥ 1 such that every(ī, j̄) ∈ Ē∞ appears at least once every

B̄ consecutive time slots, i.e. at time k or at time k+ 1 or . . . or (at latest) at time

k+ B̄−1 for any k≥ 0.

Proof. It is not difficult to observe that similar to (3.27),̄E∞ is given by

Ē∞ = {((i, j), (p,q)) | (i, p) ∈ E∞, ( j, p) ∈ E∞, p, q, i , j}. (3.28)
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(a) Showing that (̄V, Ē∞) is connected is equivalently to showing that for any two

pairs (i, j) and (p,q) there exits a path connecting them. Since (V,E∞) is assumed con-

nected, there exits a pathi0→ i1→ . . . ,→ i l−1→ i l, for somel ≤ n, such thati0 = p and

i l = i. From (3.28), it is easily argued that (i0, j)→ (i1, j)→ . . .→ (i l−1, j)→ (i l , j) rep-

resents a path connecting (i, j) with (p, j). Similarly, there exits a pathj0→ j1→ . . .→

jm−1→ jm for somem≤ n, such thatj0 = q and jm = j. Therefore, (p, j0)→ (p, j1)→

. . .→ (p, jm−1)→ (p, jm) is a path connecting (p, j) with (p,q) and it follows that (i, j) and

(p,q) are connected.

(b) Let ((i, j), (p,q)) be an edge in̄E∞ or equivalently (i, p) ∈ E∞ and (j,q) ∈ E∞. By

Assumption 3.3.2, we have that for anyk≥ 0

(i, p) ∈ E(k)∪E(k+1). . .∪E(k+B−1),

( j,q) ∈ E(k)∪E(k+1). . .∪E(k+B−1),

where the scalarB was introduced in Assumption 3.3.2. But this also implies that

(ī, j̄) ∈ Ē(k)∪ Ē(k+1)∪ . . .∪ Ē(k+B−1), ∀(ī, j̄) ∈ Ē∞.

ChoosingB̄, B, the result follows. �

Let Φ(k, s) ,W(k−1)W(k−2)· · ·W(s), with Φ(k,k) =W(k) denote the transition

matrix ofW(k) for anyk≥ s. It should be obvious from the properties ofW(k) thatΦ(k, s)

is a non-negative matrix with positive diagonal entries and‖Φ(k, s)‖∞ ≤ 1 for anyk ≥ s.

Lemma 3.4.2.LetW(k) be the matrix introduced in Lemma 3.4.1. Let Assumptions 3.3.1

and 3.3.2 hold for G(k). Then there exits a row index̄i∗ such that

N∑

j̄=1

[Φ(s+m, s)] ī∗ j̄ ≤ 1−ηm ∀ s,m≥ B̄−1, (3.29)
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whereη is the lower bound on the non-zero entries ofW(k) and B̄ is the positive integer

from the part (b) of the Proposition 3.4.1.

Proof. Let (i∗, j∗) ∈ E∞ be a pair of agents. By Assumptions 3.3.1 and 3.3.2, there exits a

positive integers′ ∈ {s, s+1, . . . , s+ B̄−1} such that agentj∗ sends information to agenti∗

at times′. This implies thatNi∗(k)∩N j∗(k) , ∅ and by part (b) of Lemma 3.4.1, we have

that
N∑

j̄=1

[W(s′)] ī∗ j̄ ≤ 1−η,

whereī∗ is the index corresponding to the pair (i∗, j∗). The sum of thēi∗ row of transition

matrixΦ(s′+1, s) can be expressed as

N∑

j̄=1

[Φ(s′+1, s)] ī∗ j̄ =

N∑

j̄=1

[W(s′)] ī∗ j̄

N∑

h̄=1

[Φ(s′, s)] j̄ h̄.

But since‖Φ(k, s)‖∞ ≤ 1 for anyk ≥ s, we have that
∑N

h̄=1
[Φ(s′, s)] j̄ h̄ ≤ 1 for any j̄, and

therefore
N∑

j̄=1

[Φ(s′+1, s)] ī∗ j̄ ≤ 1−η. (3.30)

We can writeΦ(s′ + 2, s) = W(s′ + 1)Φ(s′ + 1, s) and it follows that thēi∗ row sum of

Φ(s′+2, s) can be expressed as

N∑

j̄=1

[Φ(s′+2, s)] ī∗ j̄ =

N∑

j̄=1

[W(s′+1)]ī∗ j̄

N∑

h̄=1

[Φ(s′+1, s)] j̄ h̄.

Since
∑N

h̄=1
[Φ(s′+1, s)] j̄ h̄ ≤ 1 for any j̄ it follows that

N∑

j̄=1

[Φ(s′+2, s)] ī∗ j̄ ≤ [W(s′+1)]ī∗ ī

N∑

h̄=1

[Φ(s′+1, s)] ī∗h̄+
∑

j̄=1, j̄,ī∗

[W(s′+1)]ī∗ j̄ ≤

≤ [W(s′+1)]ī∗ ī∗(1−η)+
∑

j̄=1, j̄,ī∗

[W(s′+1)]ī∗ j̄ ≤
N∑

j̄=1

[W(s′+1)]ī∗ j̄−η[W(s′+1)]ī∗ ī∗ ≤ 1−η2,
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since [W(s′+1)]ī∗ ī∗ ≥ η. By induction it can be easily argued that

N∑

j̄=1

[Φ(s′+m, s)] ī∗ j̄ ≤ 1−ηm, ∀m≥ 0. (3.31)

Note that by Assumption 3.3.2, a pair (i, j) can exchange information ats′ = s the earliest

or ats′ = s+B−1 the latest. From (3.31) we obtain that fors′ = s+B−1

N∑

j̄=1

[Φ(s+B−1+m, s)] ī∗ j̄ ≤ 1−ηm, ∀m≥ 0, (3.32)

and fors′ = s
N∑

j̄=1

[Φ(s+m, s)] ī∗ j̄ ≤ 1−ηm, ∀m≥ 0,

or
N∑

j̄=1

[Φ(s+B−1+m, s)] ī∗ j̄ ≤ 1−ηm+B−1, ∀m≥ 0, (3.33)

From (3.32) and (3.33) we get

N∑

j̄=1

[Φ(s+B−1+m, s)] ī∗ j̄ ≤ 1−ηm+B−1, ∀s,m≥ 0,

or equivalently
N∑

j̄=1

[Φ(s+m, s)] ī∗ j̄ ≤ 1−ηm, ∀m≥ B−1. (3.34)

�

Corollary 3.4.1. Let W(k) be the matrix introduced in Lemma 3.4.1 and let Assumptions

3.3.1 and 3.3.2 hold for G(k). We then have

[Φ(s+ (N−1)B̄−1, s)] i j ≥ η(N−1)B̄ ∀s, i, j, (3.35)

whereη is the lower bound on the non-zero entries ofW(k) and B̄ is the positive integer

from the part (b) of the Proposition 3.4.1.

73



Proof. By Proposition 3.4.1 and Lemma 3.4.1 all the assumptions of Lemma 2, [34] are

satisfied, from which the result follows. �

We are now ready to proveTheorem 3.3.1andCorollary 3.3.1.

3.4.1 Proof of Theorem 3.3.1

We have that the vector of distances between the states of theagents respects the

inequality

d(k+1)≤W(k)d(k),

where the properties ofW(k) are described by Lemma 3.4.1.

It immediately follows that

‖d(k+1)‖∞ ≤ ‖d(k)‖∞, for k≥ 0. (3.36)

Let B̄0 , (N − 1)B̄− 1, whereB̄ is the positive integer from the part (b) of the

Proposition 3.4.1. In the following we show that all row sumsof Φ(s+ 2B0, s) are

upper-bounded by a positive scalar strictly less than one. Indeed sinceΦ(s+ 2B̄0, s) =

Φ(s+2B̄0, s+ B̄0)Φ(s+ B̄0, s) we obtain that

N∑

j̄=1

[Φ(s+2B̄0, s)] ī j̄ =

N∑

j̄=1

[Φ(s+2B̄0, s+ B̄0)] ī j̄

N∑

h̄=1

[Φ(s+ B̄0, s)] j̄ h̄, ∀ī.

By Lemma 3.4.2 we have that there exists a rowj̄∗ such that

N∑

h̄=1

[Φ(s+ B̄0, s)] j̄∗h̄ ≤ 1−ηB̄0,∀s,
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and since
∑N

h̄=1
[Φ(s+ B̄0, s)] j̄ h̄ ≤ 1 for any j̄, we get

N∑

j̄=1

[Φ(s+2B̄0, s)] ī j̄ ≤
N∑

j̄=1, j̄, j̄∗

[Φ(s+2B̄0, s+ B̄0)] ī j̄ + [Φ(s+2B̄0, s+ B̄0)] ī j̄∗(1−ηB̄0) =

=

N∑

j̄=1

[Φ(s+2B̄0, s+ B̄0)] ī j̄ − [Φ(s+2B̄0, s+ B̄0)] ī j̄∗η
B̄0.

By Corollary 3.4.1 it follows that

[Φ(s+2B̄0, s+ B̄0)] ī j̄ ≥ ηB̄0+1, ∀ī, j̄, s,

and since
∑N

j̄=1
[Φ(s+2B̄0, B̄0)] ī j̄ ≤ 1 we get that

N∑

j̄=1

[Φ(s+2B̄0, s)] ī j̄ ≤ 1−η2B̄0+1 ∀ī, s.

Therefore

‖Φ(s+2B̄0, s)‖∞ ≤ 1−η2B̄0+1 ∀s. (3.37)

It follows that

‖d(tk)‖∞ ≤
(

1−η2B̄0+1
)k
‖d(0)‖∞, ∀k ≥ 0, (3.38)

where tk = 2kB̄0 which shows that the subsequence{‖d(tk)‖∞}k≥0 asymptotically con-

verges to zero. Combined with inequality (3.36) we farther obtain that the sequence

{‖d(k)‖∞}k≥0 asymptotically converges to zero. Therefore the agents asymptotically reach

consensus.

3.4.2 Proof of Corollary 3.3.1

The main idea of the proof consist of showing that the setco(A(k)), whereA(k) =

{xi(k), i = 1. . .n}, converges to a set containing one point.
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We first note that sinceAi(k)⊆ A(k) it can be easily argued thatco(Ai(k))⊆ co(A(k)),

for all i andk. Also, sincecoε(Ai(k)) ⊆ co(Ai(k)) it follows thatcoε(Ai(k)) ⊆ co(A(k)) and

consequentlyxi(k+1) ∈ co(A(k)). Therefore, we have thatco(A(k+1))⊆ co(A(k)) for all

k and from the theory of limit of sequence of sets, it follows that

liminf co(A(k)) = limsupco(A(k)) = lim co(A(k)) = A∞,

whereA∞ =
⋂

k≥0co(A(k)). We denote the diameter of the setA(k) by

δ(A(k)) = sup{d(x,y) | x,y ∈ A(k)},

and by Proposition 2 of [46] we have that

δ(co(A(k))) = δ(A(k)).

From Theorem 3.3.1 we have that

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i , j,

and consequently

lim
k→∞

δ(A(k)) = lim
k→∞

δ(co(A(k))) = 0,

which also means that

δ(A∞) = 0,

i.e. the setA∞ contains only one point, sayx∗ ∈ X, or A∞ = co(x∗), or

lim
k→∞

co(A(k)) = co(x∗).

But sincexi(k+1) ∈ coε(Ai(k)) ⊆ co(A(k)) for all i,k it follows that

lim
k→∞

d(xi(k), x∗) = 0,∀ i,

i.e. the states of the agents converge to the same pointx∗ ∈ X.
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3.5 Distance between the consensus points and the initial points

In this section we analyze the evolution of the distance between the states of the

agents and their initial values under the scheme described by Theorem 3.3.1. This analysis

will give us upper bounds on the distance between the consensus point(s) and the initial

values of the agents.

Consider distanced(xi(k), xl(0)) for somei, l and let us assume thatxi(k+1) is cho-

sen according to the scheme described by Theorem 3.3.1, i.e.xi(k+1) ∈ coε(Ai(k)). By

part (a) of Proposition 3.2.2 we can express this distance as

d(xi(k+1), xl(0))≤
∑

j∈Ni(k)

λi j (k)d(x j(k), xl(0)), (3.39)

whereλi j (k) ≥ ε and
∑

j∈Ni(k) λi j (k) = 1. By defining then dimensional vectorµl(k) =

(d(xi(k), xl(0))) (wherei varies) and then×n dimensional matrixΛ(k) = (λi j (k)), inequal-

ity (3.39) can be compactly written as

µl(k+1)≤ Λ(k)µl(k), µl(0)= µl
0. (3.40)

whereΛ(k) is a row stochastic matrix. It is not difficult to note that the underlying graph

of Λ(k) is G(k) and that in fact inequality (3.40) is valid for anyl. In the following

proposition we give upper bounds on the distance between theconsensus states and the

initial values of the states.

Proposition 3.5.1.Let Assumptions 3.3.1 and 3.3.2 hold for G(k) and let the states of the

agents be updates according to the scheme given by Theorem 3.3.1. We then have that

lim
k→∞

d(xi(k), xl(0))≤
n∑

j=1

v jd(x j(0), xl(0)), ∀ i, l, (3.41)
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where v= (v j) is a vector with positive entries summing up to one satisfying

lim
k→∞
Λ(k)Λ(k−1)· · ·Λ(0)= 1vT , (3.42)

and where1 is the n dimensional vector of all ones andΛ(k) is the matrix defined in

inequality (3.40).

Proof. Our assumptions fit the assumptions of Lemmas 3 and 4 of [34], from where (3.42)

follows. Therefore by inequality (3.40) the result follows. �

Remark 3.5.1. If in addition to the assumptions of Proposition 3.5.1 we also assume that

Λ(k) is doubly stochastic, then by Proposition 1 of [34] we get that

lim
k→∞
Λ(k)Λ(k−1)· · ·Λ(0)=

1
n

11T .

Therefore, inequality (3.41) gets simplified to

lim
k→∞

d(xi(k), xl(0))≤ 1
n

n∑

j=1

d(x j(0), xl(0)), ∀i.

The assumptions in this remark correspond to the assumptions for the average consensus

problem in Euclidean spaces. For the aforementioned case, the consensus point is given

by the average of the initial points, i.e. xav =
1
n

∑n
i=1 xi(0). It can be easily check that

indeed xav satisfies

‖xav− xl(0)‖ ≤ 1
n

n∑

j=1

‖x j(0)− xl(0)‖,

where‖ · ‖ represents the euclidean norm.

3.6 Application - Asymptotic consensus of opinion

Social networks play a central role in the sharing of information and formation of

opinions. This is true in the context of advising friends on which movies to see, relaying
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information about the abilities and fit of a potential new employee in a firm, debating the

merits of politicians. In the following we consider a scenario in which a group of agents

try to agree on a common opinion. Assume for example that a group of friends would

like to go to see a movie. Different members of the group may suggest different movies.

A member of the group discusses with all or just some of his/her friends to find out about

their opinions. This member gives some weight (importance)to the opinion of his friends

based on the trust in theirexpertise. For instance some members of the group are more

informed about the quality of the proposed movies, and therefore there opinions may have

a heavier influence on the final decision. By repeatedly discussing among themselves, the

group of friends have to choose one of the movies.

In the following we mathematically formalize the scenario described above and

show that we can use the framework introduced in the previoussections to give an al-

gorithm which ensures asymptotic consensus on opinions. Wemodel the opinion of a

member of the group (agent) as a discrete random variable. Under an appropriate metric

and by providing a convex structure we show that the metric space of discrete random

variable is convex . In addition, we analyze in more detail the convex hull of a finite set;

this analysis is possible since the convex structure is given explicitly. We give an itera-

tive algorithm that ensures agreement of opinion, which is based on Theorem 3.3.1 and

provide some numerical simulations.
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3.6.1 Geometric framework

Let s be a positive integer, letS = {1,2, . . . , s} be a finite set and let (Ω,F ,P) be a

probability space. We denote byX the space of discrete measurable functions (random

variable) on (Ω,F ,P) with values inS.

We introduce the operatord :X×X→R, defined as

d(X,Y) = E[ρ(X,Y)],

whereρ : R×R→ {0,1} is the discrete metric, i.e.

ρ(x,y) =






1 x, y

0 x= y

It is not difficult to note that the operatord can also be written asd(X,Y) = E[1{X,Y}] =

Pr(X , Y), where1{X,Y} is the indicator function of the event{X , Y}.

We note that the operatord satisfies the following properties

1. For anyX,Y ∈ X, d(X,Y) = 0 if and only if X = Y with probability one.

2. For anyX,Y,Z ∈ X, d(X,Z)+d(Y,Z) ≥ d(X,Y) with probability one,

and therefore is a metric onX. The setX together with the operatord define the

metric space(X,d).

Let θ ∈ {1,2} be an independent random variable, with probability mass function

Pr(θ = 1)= λ andPr(θ = 2)= 1−λ, whereλ ∈ [0,1]. We define the mappingψ : X×X×

[0,1]→X given by

ψ(X1,X2,λ) = 1{θ=1}X1+1{θ=2}X2, ∀X1,X2 ∈ X,λ ∈ [0,1]. (3.43)
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Proposition 3.6.1.The mappingψ is a convex structure onX.

Proof. For anyU,X1,X2 ∈ X andλ ∈ [0,1] we have

d(U,ψ(X1,X2,λ)) = E[ρ(U,ψ(X1,X2,λ))] = E[E[ρ(U,ψ(X1,X2,λ))|U,X1,X2]] =

= E[E[ρ(U,1{θ=1}X1+1{θ=2}X2)]|U,X1,X2] = E[λρ(U,X1)+ (1−λ)ρ(U,X2)] =

= λd(U,X1)+ (1−λ)d(U,X2).

�

From the above proposition it follows that (X,d,ψ) is aconvex metric space.

The next theorem characterizes the convex hull of a finite setin X.

Theorem 3.6.1.Let n be a positive integer and let A= {X1, . . . ,Xn} be a set of points in

X. Consider the independent random variableθ taking values in the finite set{1, . . . ,n},

with probability measure given by Pr(ω : θ(ω) = i) = wi , for some non-negative scalars

wi , with
∑n

i=1wi = 1. Then

co(A) =





Z ∈ X | Z =

n∑

i=1

1{θ=i}Xi , ∀wi ≥ 0,
n∑

i=1

wi = 1





. (3.44)

Proof. We recall from Proposition 3.2.1 that the convex hull ofA is given by

co(A) = lim Am=

∞⋃

m=1

Am,

whereAm = ψ̃(Am−1), with A1 = ψ̃(A). Also, sinceAm is an increasing sequence, clearly

A⊂ Am for all m≥ 1. We define the set

K(A) ,





Z ∈ X | Z =

n∑

i=1

1{θ=i}Xi , ∀wi ≥ 0,
n∑

i=1

wi = 1





.
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The proof is structured in two parts. In the first part we show that any point inK(A)

belongs to the convex hull ofA, while in the second part we show that any point inco(A)

belongs toK(A) as well.

Let Z ∈ K(A) i.e. Z =
∑n

i=11{θ=i}Xi wherePr(θ = i) =wi , for somewi ≥ 0,
∑n

i=1wi =

1. The random variableθ is defined such thatθ(ωi) = i andPr(ωi) =wi . LetΩi = {ωi
1,ω

i
2},

i = 1. . .n−1 be a set of independent sample spaces (i.e. the elementary eventsωi
j andωl

p

are independent for anyl , i and for anyj). We define the probability measure for each

of the events inΩi as

Pr(ωi
1) =

w1+ . . .+wi−1

w1+ . . .+wi
,

Pr(ωi
2) =

wi

w1+ . . .+wi
,

for i = 1. . .n−1. We consider the following succession of events fromΩi

S1 =
{

ω1
1ω

2
1 . . .ω

n−1
1

}

,

S2 =
{

ω1
2ω

2
1 . . .ω

n−1
1

}

,

Si =
⋃2

j1... j i−2=1

{

ω1
j1
. . .ωi−2

j i−2
ωi−1

2 ωi
1 . . .ω

n−1
1

}

, i = 3. . .n−1,

Sn =
⋃2

j1... jn−2=1

{

ω1
j1
. . .ωn−2

jn−2
ωn−1

2

}

.

(3.45)

For example, forn= 4 (3.45) becomes

S1 = {ω1
1ω

2
1ω

3
1},

S2 = {ω1
2ω

2
1ω

3
1},

S3 = {ω1
1ω

2
2ω

3
1}∪ {ω

1
2ω

2
2ω

3
1}

S4 = {ω1
1ω

2
1ω

3
2}∪ {ω

1
2ω

2
1ω

3
2}∪ {ω

1
1ω

2
2ω

3
2}∪ {ω

1
2ω

2
2ω

3
2}.

Using the independence assumption on the events fromΩi is not difficult no see

that

Pr(Si) = wi , i = 1. . .n.
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Assume that each eventωi that we observe can be decomposed in a succession of inde-

pendent events fromΩi , which are invisible to the observer. In particular let

ωi = Si , i = 1. . .n.

The particular decomposition of eventωi in a set of intermediate, independent events

given bySi makes sense since bothωi and Si have the same probability measure. It

immediately follows that

1{ω:θ(ω)=i} = 1{ωi} = 1{Si}. (3.46)

Let us now define the random variablesθi : Ωi → {i, i +1}, where

θi(ω
i
1) = i, θi(ω

i
2) = i +1,

for i = 1. . .n−1. Obviously

Pr(θi = i) =
w1+ . . .+wi−1

w1+ . . .+wi
, Pr(θi = i +1)=

wi

w1+ . . .+wi
,

andθi are independent random variables.

From (3.45) and (3.46) together with the independence of therandom variablesθi

the following equalities in terms of the indicator functionare satisfied

1{θ=1} = Πn−1
j=11{θ j= j}

1{θ=i} = 1{θi−1=i}Πn−1
j=i 1{θ j= j}, i = 2. . .n−1

1{θ=n} = 1{θn−1=n}.

(3.47)

From (3.47) it follows thatZ is the result of thenth step of the iteration

Yi+1 = 1{θi=i}Yi +1{θi=i+1}Xi+1,
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for i = 1. . .n, with Y1 = X1, i.e. Z = Yn. It can be easily argued thatYi ∈ Ai−1, i = 2. . .n

and thereforeZ ∈ An−1 or Z ∈ co(A) which implies thatK(A) ⊂ co(A).

We now begin the second part of the proof and show that any point in co(A) belongs

toK(A) as well. IfZ ∈ co(A), from Section 3.2.2 we have that there exits a positive integer

m such thatZ ∈ Am and thereforeZ is the root of a binary tree of heightm with leaves

from the setA. Using the same notations as in Section 3.2.2 for each of the leaf nodesXi ,

there existsni ≥ 1 paths fromZ to Xi , of lengthsmi l , l = 1. . .ni which are denoted by

PZ,Xi ,

{(

{Yi l , j}
mil
j=0, {λi l , j}

mil
j=1

)

| l = 1. . .ni

}

,

whereYi l , j−1 = ψ
(

Yi l , j ,∗,λi l , j

)

for j = 1. . .mi l , l = 1. . .ni and where we denoted by∗ some

intermediate node in the tree. We introduce the independent, random variablesθi l , j such

thatPr(θi l , j = i l , j) = λi l , j andPr(θi l , j = ∗) = 1−λi l , j . It follows thatZ can be expressed as

Z =
n∑

i=1





ni∑

l=1

mil∏

j=1

1{ω:θil , j=i l , j}




Xi

Using again the independence ofθi l , j we have that

ni∑

l=1

mil∏

j=1

1{ω:θil , j=i l , j} = 1{⋃ni
l=1

⋂mil
j=1{ω:θil , j=i l , j}}

Let Si ,
{⋃ni

l=1

⋂mil
j=1{ω : θi l , j = i l , j}

}

and let us interpret the events inSi as the set of

underlyingsub−eventsgeneratingωi i.e.ωi = Si. It is not difficult to see that

Pr(ωi) = Pr(Si) =W(PZ,Xi ).

By definingwi ,W(PZ,Xi ) we get that
∑n

i=1Pr(ωi) = 1. Note that if there exits ani∗ such

thatXi∗ is not among the leaves of the binary tree rooted atZ, the measure of the eventωi

is zero. Therefore we have thatZ can be expressed as

Z =
n∑

i=1

1{ωi}Xi =

n∑

i=1

1{θ=i}Xi ,
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wherePr(θ = i) = wi and hence it follows thatZ ∈ K(A) and consequentlyco(A) ⊂ K(A).

From part one and part two of our proof, the result follows.

�

Remark 3.6.1. We say that Zis betweenX1 and X2 if d(X1,Z)+d(Z,X2) = d(X1,X2). For

any two points X1,X2 ∈ X, the set

{Z ∈ X | d(X1,Z)+d(Z,X2) = d(X1,X2)},

is calledmetric segmentand is denoted by[X1,X2]. We note that any point Z∈ X belong-

ing to the convex hull of X1,X2 is on the metric segment between X1 and X2. Indeed, if

Z ∈ co({X1,X2}) then Z= 1{θ=1}X1+1{θ=2}X2, where Pr(θ = 1)= λ and Pr(θ = 2)= 1−λ,

for someλ ∈ [0,1]. It follows that

d(X1,Z)+d(Z,X2) = E[ρ(X1,Z)+ρ(Z,X2)] = E[E[ρ(X1,Z)+ρ(Z,X2)]|X1,X2] =

= E[λρ(X1,X2)+ (1−λ)ρ(X1,X2)] = d(X1,X2).

However, not every point belonging to the metric segment[X1,X2] belongs to co({X1,X2}).

Indeed, assume for example that X1,X2 ∈ {1,2} and consider a random variable Z∈ {1,2}

whose probability mass function, conditioned on the valuesof X1 and X2 is given by

Pr(Z= 2|X1= 2,X2= 1)= λ, Pr(Z= 1|X1= 2,X2= 1)= 1−λ, Pr(Z= 1|X1= 1,X2= 2)= λ̃,

Pr(Z = 1|X1 = 1,X2 = 2)= 1− λ̃ and Pr(Z = 2|X1 = 2,X2 = 2)= Pr(Z = 1|X1 = 1,X2 = 1)=

1, for someλ , λ̃ ∈ (0,1). Since Pr(Z = 2|X1 = 2,X2 = 1) , Pr(Z = 1|X1 = 1,X2 = 2) it

follows that Z< co({X1,X2}). However it can be easily checked that Z∈ [X1,X2]. In fact

any random variable Z whose probability mass function conditioned on the values of X1
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and X2 satisfies

∑

z,x1,x2

Pr(Z = z|X1 = x1,X2 = x2) = 0,
∑

z,x

Pr(Z = z|X1 = x,X2 = x) = 0,

belongs to the metric segment[X1,X2].

Corollary 3.6.1. Let n be a positive integer and let A= {X1, . . . ,Xn} be a set of points in

X. Consider the independent random variableθ taking values in the finite set{1, . . . ,n},

with probability measure given by Pr(ω : θ(ω) = i) = wi , for some non-negative scalars

wi , with
∑n

i=1wi = 1. Then

coε(A) =





Z ∈ X | Z =

n∑

i=1

1{θ=i}Xi , ∀wi ≥ ε,
n∑

i=1

wi = 1





. (3.48)

Proof. Follows immediately from Definition 3.2.5 and Theorem 3.6.1. �

Recall the discussion introduced by Remark 3.2.1 on what we understand by a small

enough value ofε.

3.6.2 Consensus of Opinion Algorithm

We assume that each agent of a group ofn agents has aninitial opinion. We model

the set of opinions by a finite set of distinct integers, sayS = {1,2, . . . , s} for some positive

integers, where each element ofS indicates an opinion. The goal of the agents is to reach

the same opinion by repeatedly discussing among themselves.

Denoting as before byk the time-index and byG(k) = (V,E(k)) the time varying

graph modeling the communication network among then agents, we model the evolution

of the opinion of an agenti as a random processXi(k), whereXi(k) ∈ X for all k≥ 0. Each

agenti has an initial opinionXi(0)= x0
il ∈ S with probabilitypil ≥ 0, with

∑s
l=1 pil = 1.
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Corollary 3.6.2. Let Assumptions 3.3.1 and 3.3.2 hold for G(k). Given a small enough,

positive scalarε < 1, assume that at every time-slot each agent i rolls an imaginary

dice with |Ni(k)| facets numbered from1 to |Ni(k)|, independently of the other agents.

The probability that the result of a dice roll is j∈ Ni(k), is wi j (k) with wi j (k) ≥ ε and

∑

j∈Ni (k) wi j (k) = 1. The agent i updates its state according to the following scheme. If the

result of the dice roll is j then agent i chooses the opinion ofagent j. We then have that

the agents asymptotically agree on the same opinion, i.e.

lim
k→∞

d(Xi(k),X j(k)) = 0,∀i, j

Proof. By modeling the dice of agenti as an i.i.d. random processθi(k) ∈ {1,2, . . . , |Ni(k)|}

such thatPr(θi(k) = j) = wi j (k) for all j ∈ Ni(k) and for alli,k ≥ 0, the update scheme of

agenti can be formally written as

Xi(k+1)=
∑

j∈Ni (k)

1{θi(k)= j}X j(k). (3.49)

However this implies thatXi(k+1)∈ coε(Ai(k)), ∀i,k and the result follows from Theorem

3.3.1. �

3.6.3 Probabilistic analysis of the consensus algorithm

In this section we give a probabilistic analysis of the consensus of opinion algorithm

introduced in the previous section. We discuss about the different modes of convergence

to agreement (from a probabilistic point of view) and we givean alternative proof of

Corollary 3.6.2 using purely probability theory arguments. In addition, we discuss about

the convergence in distribution of the states of the agents to a particular random variable

and we redefine the notion ofaverage consensusfrom R
n to fit the metric spaceX.
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Corollary 3.6.2 shows that under the proposed scheme the distances between the

states of the agents converge to zero. However, sinceX is a space of discrete random

variables, we can say more about the modes of convergence of the states of the agents.

Recall that we defined the distance between two pointsX1,X2 ∈ X as

d(X1,X2) = E[ρ(X1,X2)] = Pr(X1 , X2).

From Corollary 3.6.2 we have that

lim
k→∞

d(Xi(k),X j(k)) = 0,

or equivalently

lim
k→∞

Pr(Xi(k) , X j(k)) = 0. (3.50)

This says that the measure of the set on whichXi(k) andX j(k) are different converges to

zero ask goes to infinity, i.e.the agents asymptotically agree in probability sense. In what

follows we show that in fact the agents asymptotically agreewith probability one (or in

almost sure sense).

Given an arbitraryε > 0, we define the event

Bk(ε) , {ω : max
i, j
|Xi(k)−X j(k)| > ε}.

An upper bound on the probability of the eventBk(ε) is given by

Pr(Bk(ε)) = Pr
(⋃

i, j

{

ω : |Xi(k)−X j(k)| > ε
})

≤

≤∑

i, j Pr
(

|Xi(k)−X j(k)| > ε
)

≤∑

i, j Pr
(

Xi(k) , X j(k)
)

.

(3.51)

From (3.50) and (3.51) we obtain

lim
k→∞

Pr (Bk(ε)) = 0.
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Recall that by inequality (3.38),d(Xi(k),X j(k)) = Pr(Xi(k) , X j(k)), ∀i, j converge at least

geometrically to zero. Therefore

∑

k≥0

Pr(Bk(ε)) <∞,

and by the Borel-Cantelli lemma we have that

Pr(Bk(ε) happens infinetely often)= 0.

Equivalently, this also means that

Pr

(

lim
k→∞

max
i, j
|Xi(k)−X j(k)| = 0

)

= 1,

or that the agents asymptotically agree with probability one.

In the following we show that the same result can be obtained by using purely

probability theory arguments. For simplicity we assume that the communication network

remains constant and connected and that the coefficientswi j from the agreement scheme

are constant as well.

Proposition 3.6.2.Let the graph modeling the communication network be time invariant

and connected and let the agents update their state according to the scheme described in

Corollary 3.6.2, where wi j > 0 are assumed constant for all k≥ 0. We then have that the

agents asymptotically agree with probability one, i.e.

Pr

(

lim
k→∞

max
i, j
|Xi(k)−X j(k)| = 0

)

= 1. (3.52)

Proof. We define the random processZ(k) = (X1(k),X2(k), . . . ,Xn(k)) which has a maxi-

mum ofss states and we introduce theagreement spaceas

A , {(o,o, . . . ,o) | o ∈ S}.
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We saw earlier that the state update dynamics is given by

Xi(k+1)=
∑

j∈Ni

1{θi(k)= j}X j(k),

wherePr(θi(k) = j) = wi j , for all j ∈ Ni and for all i. The conditional probability of

Xi(k+1) conditioned onX j(k), j ∈ Ni is given by

Pr(Xi(k+1)= oi |X j(k) = o j , j ∈ Ni) =
∑

j∈Ni

wi j1{oi=o j}. (3.53)

It is not difficult to note thatZ(k) is a finite state, homogeneous Markov chain. We

will show thatZ(k) hassabsorbing states and all otherss−sstates are transient, where the

absorbing states correspond to the states in agreement spaceA. Using the independence

of the random processesθi(k), the entries of the probability transition matrix ofZ(k) can

be derived from (3.53) and are given by

Pr(X1(k+1)= ol1, . . . ,Xn(k+1)= oln|X1(k) = op1, . . . ,Xn(k) = opn) = (3.54)

=

n∏

i=1

∑

j∈Ni

wi j1{l i=p j}.

We note from (3.54) that once the process reaches an agreement state it will stay there

indefinitely, i.e.

Pr(X1(k+1)= o, . . . ,Xn(k+1)= o|X1(k) = o, . . . ,Xn(k) = o) = 1, ∀o ∈ S,

and hence the agreement states are absorbing states. We willshow next that, under the

connectivity assumption, the agreement spaceA is reachable from any state, and there-

fore all other states are transient. We are not saying that all agreement states are reach-

able from any state, but that from any state at least one agreement state is reachable. Let

(o1,o2, . . . ,on) <A, with o j ∈ S, j = 1. . .n be an arbitrary state. We first note that from
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this state only agreement states of the form (o j ,o j , . . . ,o j) can be reached. Given that

X j(0)= o j , we show that with positive probability the agreement vector (o j ,o j , . . . ,o j) can

be reached. At time slot one, with probabilityw j j agentj keeps its initial choice, while its

neighbors to which it sends information can chooseo j with some positive probability, i.e.

Xi(1)= o j with probabilitywi j , for all i such thatj ∈ Ni . Due to the connectivity assump-

tion there exits at least onei such thatj ∈ Ni. At the next time-index all the agents which

have already choseno j keep their opinion with positive probability, while their neighbors

will chooseo j with positive probability. Since the communication network is assumed

connected, every agent will be able to chooseo j with positive probability in at mostn−1

steps, therefore an agreement state can be reached with positive probability. Hence, from

any initial state (o1,o2, . . . ,on) < A, all agreement states of the form (o j ,o j , . . . ,o j) with

j = 1. . .n are reachable with positive probability. Since the agreement states are absorbing

states, it follows that (o1,o2, . . . ,on) <A is a transient state. Therefore, the probability for

the Markov chainZ(k) to be in a transient state converges asymptotically to zero, while

the probability to be in one of the agreement states converges asymptotically to one, i.e.

lim
k→∞

Pr(Z(k) <A) = 0,

or equivalently

lim
k→∞

Pr





⋃

i, j

{

Xi(k) , X j(k)
}




= 0. (3.55)

Given an arbitraryε > 0, we define the event

Bk(ε) ,

{

ω : max
i, j
|Xi(k)−X j(k)| > ε

}

.
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But since

Bk(ε) =
⋃

i, j

{

|Xi(k)−X j(k)| > ε
}

⊆
⋃

i, j

{

Xi(k) , X j(k)
}

,

from (3.55) it follows that

lim
k→∞

Pr (Bk(ε)) ≤ lim
k→∞

Pr





⋃

i, j

{

Xi(k) , X j(k)
}




= 0,

and hence the agents asymptotically agree in probability sense. In addition, due to the ge-

ometric decay toward zero of the probabilityPr(Z(k) <A), by the Borel-Cantelli Lemma

the result follows. �

We discussed above about the different modes of convergence of the agents to the

same opinion, but we said nothing about where the states actually converge. However,

from Corollary 3.3.1 we know that there exits a random variable X∗ ∈ X such that

lim
k→∞

d(Xi(k),X∗) = 0,∀i,

or equivalently

lim
k→∞

Pr(Xi(k) , X∗) = 0,∀i,

which implies that the states of the agentsXi(k) converge toX∗ in probability. Still, this

tells us nothing about the properties ofX∗. In what follows we analyze the evolution of

the probability with which an agenti chooses between the initial values (opinions) of the

other agents in the network. Also, we focus on the convergence in distribution toX∗ and

more precisely we characterize the distribution ofX∗.

By defining the vectorZ(k) , (X1(k),X2(k), . . . ,Xn(k))′, (3.49) can be compactly

written as

Z(k+1)= Θ(k)Z(k), Z(0)= Z0, (3.56)
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where [Θ(k)] i j =1{θi(k)= j} and whereθi(k) are independent random processes withPr(θi(k)=

j) = wi j (k), wi j (k) ≥ ε and
∑

j∈Ni (k) wi j (k) = 1. Consequently

Z(k) = Γ(k)Z(0),

whereΓ(k) = Θ(k− 1)Θ(k− 2)· · ·Θ(1)Θ(0) is the transition matrix of (3.56). It can be

easily argued that the (i, j) entry ofΓ(k) can be expressed as

[Γ(k)] i j = 1{θ̄i(k)= j}, (3.57)

whereθ̄i(k) are random processes taking values in the discrete set{1,2, . . . ,n}. The quan-

tity 1{θ̄i(k)= j} is updated according to the expression

1{θ̄i(k+1)= j} =
n∑

l=1

1{θi(k)=l}1{θ̄l(k)= j} =
n∑

l=1

1{θi(k)=l,θ̄l(k)= j}, (3.58)

where the second inequality followed from the independenceof θi(k) and with1{θ̄i(0)= j} =

1{θi(0)= j} for all i, j pairs. Since the events{ω : θi(k)= l, θ̄l(k)= j} for l = 1. . .n are mutually

exclusive,1{θ̄i(k+1)= j} is indeed well defined. The probability mass function ofθ̄i(k) is

given by

Pr(θ̄i(k) = j) = [W(k)W(k−1)· · ·W(1)W(0)]i j ,

where [W(k)] i j = wi j (k).

It is not difficult to observe that the entries ofΓ(k) act as selectors between the

different entries of the initial vectorZ(0), i.e.

Xi(k) =
n∑

j=1

1{θ̄i(k)= j}X j(0).

Therefore, the probability forXi(k) to chooseX j(0) is given by the probability of̄θi(k) to

choosej, i.e.

Pr(Xi(k) = X j(0))= Pr(θ̄i(k) = j).
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Under Assumptions 3.3.1 and 3.3.2, we can invoke Lemmas 3 and4 of [34], and

obtain that there exits a vectorv with positive entries summing up to one, such that

lim
k→∞

W(k)W(k−1)· · ·W(1)W(0)= 1v′,

where1 is the vector of all ones. Therefore, ask goes to infinity the agents will pick

among the initial valuesX j(0) with probabilityv j , i.e.

lim
k→∞

Pr(Xi(k) = X j(0))= lim
k→∞

Pr(θ̄i(k) = j) = v j , (3.59)

wherev j is the jth entry of vectorv. In particular, if the matrixW(k) is doubly stochastic,

then by Proposition 1 of [34],v= 1
n1 and consequently

lim
k→∞

Pr(Xi(k) = X j(0))=
1
n
. (3.60)

This leads us to redefining theaverage consensusconcept fromRn to our particular con-

vex metric spaceX, i.e. we can say that the agents reach average consensus if they

asymptotically agree on the different initial opinions with the same probability.

Remarkably, from (3.60) it also follows thatXi(k) converge in distribution to a ran-

dom variableX∗ given by

X∗ =
n∑

j=1

1{θ∗= j}X j(0),

wherePr(θ∗ = j) = 1
n. Note thatX∗ is a point in the convex hull of{X1(0), . . . ,Xn(0)}

generated by associating equal weights to the initial values X j(0). Hence,X∗ can be

interpreted as the(empirical) averageof the initial values.

Introducing the vectorpl(k) = (pl
i(k)), wherepl

i(k) = Pr(Xi(k) = l) for somel ∈ S,

from (3.49) and from the independence of the random processes θi(k), we obtain that the
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evolution ofpl(k) respects the equation

pl(k+1)=W(k)pl(k), pl(0)= pl
0, (3.61)

where [W(k)] i j = wi j (k). Hence we obtain that there exits a vectorv with positive entries

summing up to one, such that

lim
k→∞

W(k)W(k−1)· · ·W(1)W(0)= 1v′.

Therefore, by definingπl ,
∑n

j=1v jPr(X j(0) = l), wherev j is the jth entry ofv, we have

that

lim
k→∞

Pr(Xi(k) = l) = πl , ∀i,

or equivalently thatXi(k) converge is distribution to a random variableX∗ whose proba-

bility mass function is given byPr(X∗ = l) = πl , for all i. If in addition we have thatW(k)

is doubly stochastic, we have that

lim
k→∞

Pr(Xi(k) = l) =
1
n

n∑

j=1

Pr(X j(0)= l).

3.6.4 Numerical example

In what follows we consider an example where a group of eight agents (n= 8) have

to choose between two opinions, i.e.S= {1,2}. We assume that the agents communication

network is given by an undirected circular graph as in Figure3.2, assumed fixed for all

time-slots.

We assume that the agents use the scheme described by Corollary (3.6.2) for up-

dating their states, i.e. the coefficientswi j are constant. In particular we choosewii = 7/9

andwi,i−1 = wi,i+1 = 1/9 and choose as initial valuesXi(0)= 1 for i = 1. . .4 andXi(0)= 2
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wi j define the probability mass function of the random variablesθi(k) as described in

Corollary 3.6.2. We consider the linear system

d̃(k+1)=W(k)d̃(k), d̃(0)= d(0).

By (3.20) of Lemma 3.4.1, we have thatd̃(k) is an upper bound ofd(k). Figure 3.4

presents the evolution of‖d̃(k)‖∞ with time. It is worth mentioning that sinceψ defined

in (3.43) satisfies the definition of a convex structure with equality, it can be easily argued

that (3.20) holds with equality and therefore the upper bound d̃(k) is in factd(k).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

‖d̃(k)‖∞

Figure 3.4: Evolution of‖d̃(k)‖∞ with time

We next analyze the distance between the initial points and the consensus point(s).

Sinceψ respects the definition of a convex structure with equality,we have that

d(Xi(k+1),Xl(0))=
∑

j∈Ni

wi j d(X j(k),Xl(0)),

which is basically a consensus algorithm. Since the consensus matrix is doubly stochastic

we know that

lim
k→∞

d(Xi(k),Xl(0))=
1
n

n∑

j=1

d(X j(0),Xl(0))
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Chapter 4

Distributed Asymptotic Agreement Problem under MarkovianRandom

Topologies

4.1 Introduction

This chapter deals with the linear consensus problem for a group of dynamic agents.

We assume that the communication flow between agents is modeled by a (possibly di-

rected) randomly switching graph. The switching is determined by a homogeneous, finite-

state Markov chain, each communication pattern corresponding to a state of the Markov

process. We address both the cases where the dynamics of the agents is expressed in con-

tinuous and discrete time and, under certain assumptions onthe consensus matrices, we

give necessary and sufficient conditions to guarantee convergence to average consensus

in mean square and in almost sure sense. The Markovian switching model goes beyond

the common i.i.d. assumption on the random communication topology and appears in

cases where Rayleigh fading channels are considered. One ofthe goals of this chapter is

to show how mathematical techniques used in the stability analysis of Markovian jump

linear systems, together with results inspired by matrix and graph theory, can be used to

prove (intuitively clear) convergence results for the (linear) stochastic consensus problem.

Basic notations and definitions:We denote by1 the vector of all ones. If the

dimension of the vector needs to be emphasized, an index willbe added for clarity (for
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example, if1 is ann dimensional vector, we will explicitly mark this by using1n ). Let

x be a vector inRn. By av(x) we denote the quantityav(x) = x′1/1′1. The symbols⊗

and⊕ represent the Kronecker product and sum, respectively. Given a matrixA, Null(A)

designates the nullspace of the considered matrix. IfX is some finite dimensional space,

dim(X) gives us the dimension ofX. We denote bycol(A) a vector containing the columns

of matrix A.

LetM be a set of matrices and letA be some matrix. ByM′ we denote the set

of the transpose matrices ofM, i.e.M′ = {M′ | M ∈ M}. ByM⊗A we understand the

following matrix set:M⊗A= {M⊗A | M ∈M}. By writing thatAM =M we understand

thatAM ∈M, for anyM ∈M.

Let P be a probability transition matrix corresponding to a homogeneous, finite

state, Markov chain. We denote byP∞ the limit set of the sequence{Pk}k≥0, i.e. all

matricesL for which there exists a sequence{tk}k≥0 in N such that limk→∞Ptk = L. Note

that if the matrixP corresponds to an ergodic Markov chain, the cardinality ofP∞ is

one, with the limit point1π′, whereπ is the stationary distribution. If the Markov chain

is periodic with periodm, the cardinality ofP∞ is m. Let d(M,P∞) denote the distance

from M to the setP∞, that is the smallest distance fromM to any matrix inP∞:

d(M,P∞) = inf
L∈P∞

‖L−M‖,

where‖ · ‖ is a matrix norm.

Definition 4.1.1. Let A be a matrix inRn×n and let G= (V,E) be a graph of order n.

We say that matrix Acorrespondsto graph G or that graph Gcorrespondsto matrix A

if an edge ei j belongs to E if and only if the(i, j) entry of A is non-zero. The graph
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corresponding to A will be denoted by GA.

Definition 4.1.2. Let s be a positive integer and letA = {Ai}si=1 be a set of matrices with

a corresponding set of graphsG = {GAi }si=1. We say that the graph GA correspondsto the

setA if it is given by the union of graphs inG, i.e.

GA ,
s⋃

i=1

GAi .

In this note we will use mainly two type of matrices:probability transition matrices

(row sum up to one) andgeneratormatrices (row sum up to zero). A generator matrix

whose both rows and columns sum up to zero will be calleddoubly stochastic generator

matrix.

To simplify the exposition we will sometimes characterize aprobability transi-

tion/generator matrix as being irreducible or strongly connected and by this we understand

that the corresponding Markov chain (directed graph) is irreducible (strongly connected).

Definition 4.1.3. Let A∈ Rn×n be a probability transition/generator matrix. We say that

A is block diagonalizableif there exists a similarity transformation P, encapsulating a

number of row permutations, such that PAP′ is a block diagonal matrix with irreducible

blocks on the main diagonal.

For simplicity, the time index for both the continuous and discrete-time cases is

denoted byt.

Chapter organization: In Section 4.2 we present the setup and formulation of the

problem and we state our main convergence theorem. In Section 4.3 we derive a number

of results which constitute the core of the proof of our main result; proof which is given

in Section 4.4. Section 4.5 contains a discussion of our convergence result.
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4.2 Problem formulation and statement of the convergence result

We assume that a group ofn agents, labeled 1 throughn, is organized in a communi-

cation network whose topology is given by a time varying graph G(t) = (V,E(t)), whereV

is the set ofn vertices andE(t) is the time varying set of edges. The graphG(t) has an un-

derlying random process governing its evolution, given by ahomogeneous, continuous or

discrete time Markov chainθ(t), taking values in the finite set{1, . . . , s}, for some positive

integers. In the caseθ(t) is a discrete-time Markov chain, its probability transition matrix

is P= (pi j ) (rows sum up to one), while ifθ(t) is a continuous time Markov chain, its gen-

erator matrix is denoted byΛ = (λi j ) (rows sum up to zero). The random graphG(t) takes

values in a finite set of graphsG = {Gi}si=1 with probabilityPr(G(t) =Gi) = Pr(θ(t) = i),

for i = 1. . . s. We denote byq= (qi) the initial distribution ofθ(t).

Lettingx(t) denote the state of thenagents, in the caseθ(t) is a discrete-time Markov

chain, we model the dynamics of the agents by the following linear stochastic difference

equation

x(t+1)= Dθ(t)x(t), x(0)= x0, (4.1)

whereDθ(t) is a random matrix taking values in the finite setD = {Di}si=1, with probability

distributionPr(Dθ(t) = Di) = Pr(θ(t) = i). The matricesDi are stochastic matrices (rows

sum up to one) with positive diagonal entries and correspondto the graphsGi , for i =

1. . . s.

In the caseθ(t) is a continuous-time Markov chain, we model the dynamics ofthe

agents by the following linear stochastic equation

dx(t) = Cθ(t)x(t)dt, x(0)= x0, (4.2)
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whereCθ(t) is a random matrix taking values in the finite setC = {Ci}si=1, with probability

distributionPr(Cθ(t) =Ci)=Pr(θ(t)= i). The matricesCi are generator like matrices (rows

sum up to zero) and correspond to the graphsGi , for i = 1. . . s. The initial statex(0)= x0,

for both continuous and discrete models, is assumed deterministic. We will sometimes

refer to the matrices belonging to the setsD andC asconsensus matrices. The underly-

ing probability space (for both models) is denoted by (Ω,F ,P) and the solution process

x(t, x0,ω) (or simply,x(t)) of (4.1) or (4.2) is a random process defined on (Ω,F ,P). We

note that the stochastic dynamics (4.1) and (4.2) representMarkovian jump linear systems

for discrete and continuous time, respectively. For a comprehensive study of the theory of

(discrete-time) Markovian jump linear systems, the readercan refer to [11] for example.

Assumption 4.2.1.Throughout this chapter we assume that the matrices belonging to the

setsD andC are doubly stochastic(rows and columns sum up to one and zero, respec-

tively) and in the case of the setD havepositive diagonal entries. We assume also that

the Markov chainθ(t) is irreducible.

Remark 4.2.1. Consensus matrices that satisfy Assumption 4.2.1 can be constructed for

instance by using a Laplacian based scheme in the case where the communication graph

is undirected or balanced (for every node, the inner degree is equal to the outer degree)

and possible weighted. If Li denotes the Laplacian of the graph Gi, we can choose Ai =

I − εLi and Ci = −Li , whereε > 0 is chosen such that Ai is stochastic.

Definition 4.2.1. We say that x(t) converges to average consensus

I. in themean square sense, if for any x0 ∈ Rn and initial distribution q= (q1, . . . ,qs)
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of θ(t),

lim
t→∞

E[‖x(t)−av(x0)1‖2] = 0.

II. in the almost sure sense, if for any x0 ∈Rn and initial distribution q= (q1, . . . ,qs) of

θ(t),

Pr( lim
t→∞
‖x(t)−av(x0)1‖) = 1.

Assumption 4.2.1 will guarantee reachingaverage consensus, desirable in impor-

tant distributed computing applications such as distributed estimation [40] or distributed

optimization [34]. Any other scheme can be used as long as it produces matrices with the

properties stated above and it reflects the communication structures among agents.

Problem 4.2.1. Given the random processesD(t) and C(t), together with Assumption

4.2.1, we derive necessary and sufficient conditions such that the state vector x(t), evolv-

ing according to (4.1) or (4.2), converges to average consensus in the sense of Definition

4.2.1.

In the following we state the convergence result for the linear consensus problem

under Markovian random communication topology.

Theorem 4.2.1.The state vector x(t), evolving according to the dynamics (4.1) (or (4.2))

converges to average consensus in the sense of Definition 4.2.1, if and only if GD (or GC)

is strongly connected.

The above theorem formulates an intuitively obvious condition for reaching con-

sensus under the linear scheme (4.1) or (4.2) and under the Markovian assumption on
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the communication patterns. Namely, it expresses the need for persistent communication

paths among all agents. We defer for Section IV the proof of this theorem and provide

here an intuitive and non-rigorous interpretation. Sinceθ(t) is irreducible, with proba-

bility one all states are visited infinitely many times. But since the graphGD (or GC) is

strongly connected, communication paths between all agents are formed infinitely many

times, which allows for consensus to be achieved. Conversely, if the graphGD (or GC)

is not strongly connected, then there exists at least two agents, such that for any sam-

ple path ofθ(t), no communication path among them (direct or indirect) is ever formed.

Consequently, consensus can not be reached. Our main contribution is to prove Theorem

4.2.1 using an approach based on the stability theory of Markovian jump linear systems,

in conjunction with a set of results based on matrix and graphtheory.

4.3 Preliminary results

This section starts with a set of general preliminary results after which it continues

with results characteristic to the cases where the dynamicsof the agents is expressed

in discrete and continuous time. The proof of Theorem 4.2.1 is mainly based on four

lemmas (Lemmas 4.3.4 and 4.3.5 for discrete-time case and Lemmas 4.3.6 and 4.3.7 for

continuous-time case) which state properties of some matrices that appear in the dynamic

equations of the first and second moment of the state vector. The proof of these lemmas

are based on results introduced in the next subsection.
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4.3.1 General preliminary results

This subsection contains the statement of a number of preliminary results that are

needed in the proofs of the auxiliary results correspondingto the discrete and continuous

time cases and in the proof of the main theorem.

The next theorem introduces a convergence result for an infinite product of ergodic

matrices whose proof can be found in [54].

Theorem 4.3.1.([54]) Let s be a positive integer and let{Ai}si=1 be a finite set of n×n

ergodic matrices. Consider a map r: N→ {1, . . . , s} such that for any finite sequence

{r(i)} ji=1, the matrix product
∏ j

i=1 Ar(i) is ergodic. Then, there exists a vector c with non-

negative entries (summing up to one), such that:

lim
j→∞

j∏

i=1

Ar(i) = 1c′. (4.3)

In the case where the matrices{Ai}si=1 are doubly stochastic as well, from the above

theorem we can immediately obtain the following corollary.

Corollary 4.3.1. Under the same assumptions as inTheorem 4.3.1, if in addition the

matrices in the set{Ai}si=1 are doubly stochastic, then

lim
j→∞

j∏

i=1

Ar(i) =
1
n
11
′. (4.4)

Proof. By Theorem 4.3.1we have that

lim
j→∞

j∏

i=1

Ar(i) = 1c′.

Since the matrices considered are doubly stochastic and ergodic their transposes are er-

godic as well. Hence, by applying againTheorem 4.3.1on the transpose versions of
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{Ai}si=1, we obtain that there exist a vectord such that

lim
j→∞





j∏

i=1

Ar(i)





′

= 1d′.

But since the stochastic matrix1c′ must be equal tod1′, the result follows. �

Remark 4.3.1. The homogeneous finite state Markov chain corresponding to adoubly

stochastic transition matrix P can not have transient states. Indeed, since P is doubly

stochastic, the same is true for Pt, for all t ≥ 1. Assuming that there exist a transient state

i, then limt→∞(Pt) ji = 0 for all j, i.e. all entries on column i converge to zero. But this

means that there exist some t∗ for which
∑

j(P
t∗) ji < 1 which contradicts the fact that Pt

∗

must be doubly stochastic. An important implication is thatwe can relabel the vertices of

the Markov chain such that P is block diagonalizable.

Remark 4.3.2. Since the Markov chain corresponding to a doubly stochastictransi-

tion/generator matrix can not have transient states, the Markov chain (seen as a graph)

has a spanning tree if and only if is irreducible (strongly connected).

The next lemma gives an upper bound on a finite product of nonnegative matrices

in terms of the sum of matrices that appear in the product. Theproof of this result can be

found in [18].

Lemma 4.3.1. [18] Let m≥ 2 be a positive integer and let{Ai}mi=1 be a set of nonnegative

n×n matrices with positive diagonal elements, then

m∏

i=1

Ai ≥ γ
m∑

i=1

Ai ,

whereγ > 0 depends on the matrices Ai , i = 1, . . . ,m.
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In the following proposition we study the convergence properties of a particular

sequence of matrices.

Proposition 4.3.1.Consider a matrix Q∈Rn×n such that‖Q‖1 ≤ 1 and a set of matrices

S = {S1, . . .Sm}, for some positive integer m≤ n. Assume that there exist a subsequence

{tk} ⊂N such thatS is a limit set of the sequence{Qtk}k≥0 and that for any S∈ S, QS∈ S,

as well. Then,S is a limit set of the sequence{Qk}k≥0, i.e.

lim
k→∞

d(Qk,S) = 0, (4.5)

where d(Q,S) =minS∈S ‖Q−S‖ and‖ · ‖ is some arbitrary matrix norm.

Proof. Will will prove (4.5) for the particular case of matrix norm one and the general

result will follow from the equivalence of norms. Pick a subsequence{t′k}k≥0 given by

t′k = tk+δk, whereδk ∈N. It follows that

d(Qt′k,S) =min
S∈S
‖QδkQtk −Qδk

S‖1 ≤ ‖Qδk‖1min
S∈S
‖Qtk −S‖1 ≤ d(Qtk,S).

Therefore, we get thatS is a limit set for the sequence{Qt′k
k≥0} and the result follows since

we can make{t′k}k≥0 arbitrary. �

The next lemma states a property of the null spaces of two generator matrices.

Lemma 4.3.2.Let A∈Rn×n and B∈Rn×n be two block diagonalizable generator matri-

ces. Then

Null(A+B) = Null(A)∩Null(B).

Proof. Obviously,Null(A)∩Null(B)⊂Null(A+B). In the following we show the opposite

inclusion. SinceA is block diagonalizable, then there exists a similarity transformation
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T such thatĀ= TAT′ is a block diagonal generator matrix (with irreducible blocks). Let

Āi ∈ Rni×ni , i = 1. . .m denote the irreducible blocks on the main diagonal ofĀ, wherem

is the number of such blocks and
∑m

i=1ni = n. The nullspace of̄A can be expressed as

Null(Ā) =










α11n1

...

αm1nm





| αl ∈R, l = 1. . .m






.

We assumed thatB is block diagonalizable, which means thatGB is a union of

isolated, strongly connected subgraphs, property which remains valid for the graph cor-

responding toB̄ = T BT′, sinceGB̄ is just a relabeled version ofGB. By addingB̄ to Ā

two phenomena can happen: we can either leave the graphGĀ unchanged or we can cre-

ate new connections among the vertices ofGĀ. In the first case,GB̄ ⊂GĀ and therefore

Null(Ā+ B̄) = Null(Ā). In the second case we create new connections among the blocks

of Ā. But since all the subgraphs of̄B are strongly connected this means that ifĀi be-

comes connected tōA j , then necessarilȳA j becomes connected tōAi , henceĀi and Ā j

form an irreducible (strongly connected) new block, whose nullspace is spanned by the

vectors of all ones. Assuming that these are the only new connections that are added to

GĀ, the nullspace of̄A+ B̄ will have a similar expression to the nullspace ofĀ with the

main difference that the coefficientsαi andα j will be equal. Therefore, in this particular

case, the nullspace of̄A+ B̄ can be expressed as

Null(Ā+ B̄) =










α11n1

...

αm1nm





| αl ∈R, αi = α j , l = 1. . .m






.
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In general all blocks̄Ai which become interconnected after addingB̄ will have equal co-

efficients in the expression of the nullspace ofĀ+ B̄, compared to the nullspace of̄A.

Therefore,Null(Ā+ B̄) ⊂ Null(Ā), which means also thatNull(A+B) ⊂ Null(A). There-

fore, if (A+B)v = 0, thenAv= 0 which implies also thatBv= 0 or v ∈ Null(B). Hence if

v ∈ Null(A+B) thenv ∈ Null(A)∩Null(B), which concludes the proof. �

In the next corollary we present a property of the eigenspaces corresponding to the

eigenvalue one of a set of probability transition matrices.

Corollary 4.3.2. Let s be a positive integer and letA = {Ai}si=1 be a set of doubly stochas-

tic, probability transition matrices. Then,

Null(
s∑

i=1

(Ai − I )) =
s⋂

i=1

Null(Ai − I ),

and dim(Null(
∑s

i=1(Ai − I ))) = 1 if and only if GA is strongly connected.

Proof. SinceAi , i = 1. . . s are doubly stochastic thenAi − I are block diagonalizable dou-

bly stochastic generator matrices. Therefore, by recursively applying Lemma 4.3.2s−1

times, the first part of the Corollary follows. For the secondpart of the Corollary, note

that, by Corollary 3.5 of [39],1N
∑s

i=1 Ai has the algebraic multiplicity equal to one, of its

eigenvalueλ = 1 if and only if the graph associated to1N
∑s

i=1Ai has a spanning tree, or in

our case is strongly connected, which in turn implies thatdim(Null(
∑s

i=1(Ai − I ))) = 1 if

and only ifGA is strongly connected. �

The following Corollary is an immediate consequence of Corollary 3.5 of [39].

Corollary 4.3.3. A generator matrix G has algebraic multiplicity equal to onefor its

eigenvalueλ = 0 if and only if the graph associated with the matrix has a spanning tree.
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Proof. Follows immediately from Corollary 3.5 of [39], by forming the probability tran-

sition matrixP= I +εG, for some appropriateε > 0, and noting thatNull(P− I ) =Null(G).

�

The following Corollary is the counterpart of Lemma 3.7 of [39], in the case of

generator matrices.

Corollary 4.3.4. Let G∈ Rn×n be a rate transition matrix. If G has an eigenvalueλ = 0

with algebraic multiplicity equal to one, thenlimt→∞eGt = 1v′, where v is a nonnegative

vector satisfying G′v= 0 and v′1 = 1.

Proof. Chooseh1 > 0 and let{t1k}k≥0 be a sequence given byt1k = h1k, for all k≥ 0. Then

lim
k→∞

eGt1k = lim
k→∞

eh1kG = lim
k→∞

Pk
h1
,

where we definedPh1 , eh1G. From the theory of continuous-time Markov chains we

know thatPh1 is a stochastic matrix with positive diagonal entries and that, given a vector

x∈Rn, x′Ph1 = x′ if and only if x′G= 0. This means that the algebraic multiplicity of the

eigenvalueλ = 1 of Ph1 is one. By Lemma 3.7 of [39], we have that limk→∞Pk
h1
= 1v′h1

,

wherevh1 is a nonnegative vector satisfyingP′h1
vh1 = vh1 andv′h1

1 = 1. AlsoG′vh1 = 0.

Choose anotherh2 > 0 and letPh2 , eh2G. Similarly as above, we have that

lim
k→∞

Pk
h2
= 1v′h2

,

wherevh2 satisfy similar properties asvh1. But since both vector belong to the nullspace

of G′ of dimension one, then they must be equal. Indeed ifx is a left eigenvector ofG,

thenvh1 andvh2 can be written asvh1 = α1x andvh2 = α2x. However, since1′vh1 = 1 and
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1
′vh2 = 1 it follows thatα1 = α2. We have shown that for any choice ofh> 0,

lim
k→∞

eGtk = ehkG= 1v′,

wherev is a nonnegative vector satisfyingG′v = 0 and1′v= 1, and therefore, the result

follows. �

4.3.2 Preliminary results for the case where the agents’ dynamics are

expressed in discrete-time

In this subsection we state and prove a set of results used to prove Theorem 4.2.1

in the case where the agents’ dynamics are expressed in discrete-time. Basically these

results study the convergence properties of a sequence of matrices{Qk}k≥0, whereQ has a

particular structure which comes from the analysis of the first and second moment of the

state vectorx(t).

Lemma 4.3.3.Let s be a positive integer and let{Ai j }si, j=1 be a set of n×n doubly stochas-

tic, ergodic matrices. Let P= (pi j ) be a s× s stochastic matrix corresponding to an irre-

ducible, homogeneous Markov chain and letP∞ be the limit set of the sequence{Pk}k≥0.

Consider the ns×ns dimensional matrix Q whose(i, j)th block is defined by Qi j , p ji Ai j .

ThenP′∞⊗
(

1
n11

′
)

is the limit set of the matrix sequence{Qk}k≥1, i.e.:

lim
k→∞

d

(

Qk,P′∞⊗
(

1
n
11
′
))

= 0. (4.6)

Proof. The proof of this lemma is based onCorollary 4.3.1. The (i, j)th block entry of the

matrix Qk can be expressed as
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(Qk)i j =
∑

1≤i1,...ik−1≤s

p ji1 pi1i2 . . . pik−1iAii1Ai1i2 . . .Aik−1 j . (4.7)

Let p∞ji be the (j, i) entry of an arbitrary matrix inP∞, i.e. there exist a sequence

{tk}k≥1 ⊂N such that limk→∞(Ptk) ji = p∞ji .

We have that

∥
∥
∥
∥
∥
(Qk)i j − p∞ji

1
n
11
′
∥
∥
∥
∥
∥
≤

∑

1≤it1,...ik−1≤s

(p ji1 . . . pik−1i)
∥
∥
∥
∥
∥
Aii1 . . .Aik−1 j −

1
n
11
′
∥
∥
∥
∥
∥
+

+
∑

1≤i1,...ik−1≤s

|p ji1 . . . pik−1i − p∞ji |
∥
∥
∥
∥
∥

1
n
11
′
∥
∥
∥
∥
∥
≤

≤ max
i1,...ik−1

{∥
∥
∥
∥
∥
Aii1 . . .Aik−1 j −

1
n
11
′
∥
∥
∥
∥
∥

}
∑

1≤i1,...ik−1≤s

p ji1 . . . pik−1i+

+

∥
∥
∥
∥
∥

1
n
11
′
∥
∥
∥
∥
∥

∑

1≤i1,...ik−1≤s

|p ji1 . . . pik−1i − p∞ji |,

where‖ · ‖ was used to denote some matrix norm. Consider the limit of theleft hand side

of the above inequality for the sequence{tk}k≥0. By Corollary 4.3.1 we know that

lim
k→∞

Aii t1
. . .Aitk−1 j =

1
n
11
′

for all sequencesit1, . . . , itk−1 and since obviously,

lim
k→∞

∑

1≤it1,...itk−1≤s

p ji t1
. . . pitk−1i = p∞ji ,

it results

lim
k→∞

(Qtk)i j = p∞ji
1
n
11
′.

ThereforeP′∞⊗
(

1
n11

′
)

is the limit set for the sequence of matrices{Qk}k≥1. �
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Lemma 4.3.4.Let s be a positive integer and consider a set of doubly stochastic matri-

ces with positive diagonal entries,D = {Di}si=1, such that the corresponding graph GD is

strongly connected. Let P be the s×s dimensional probability transition matrix of an irre-

ducible, homogeneous Markov chain and letP∞ be the limit set of the sequence{Pk}k≥0.

Consider the ns×ns matrix Q whose blocks are given by Qi j , p ji D j . ThenP′∞⊗
(

1
n11

′
)

is the limit set of the sequence of matrices{Qk}k≥1, i.e.:

lim
k→∞

d

(

Qk,P′∞⊗
(

1
n
11
′
))

= 0. (4.8)

Proof. Our strategy consists in showing that there exist ak ∈ N, such that each (i, j)th

block matrix ofQk becomes a weighted ergodic matrix, i.e (Qk)i j = p(k)
ji A(k)

i j , whereA(k)
i j

is ergodic andp(k)
ji = (Pk) ji . If this is the case, we can applyLemma 4.3.3to obtain (4.8).

The (i, j)th block matrix ofQk looks as in (4.7), with the difference that in the current case

Ai j = D j :

(Qk)i j =
∑

1≤i1,...ik−1≤s

p ji1 pi1i2 . . . pik−1iD jDi1 . . .Dik−1 = p(k)
ji A(k)

i j (4.9)

where

A(k)
i j ,

∑

1≤i1,...ik−1≤s

αi1,...ik−1D jDi1 . . .Dik−1,

with

αi1,...ik−1 ,






p ji1 pi1i2 . . . pik−1i/p(k)
ji , p(k)

ji > 0

0, otherwise

Note that each of the matrix productD jDi1 . . .Dik−1 appearing inA(k)
i j , corresponds

to a path from nodej to nodei in k−1 steps. Therefore, by the irreducibility assumption

of P, there exists ak such that each matrix in the setD appears at least once in one of the

terms of the sum (4.9), i.e.{1, ..., s} ⊆ {i1, . . . ik−1}. Using a similar idea as in Lemma 1 in

114



[18] or Lemma 3.9 in [39], by Lemma 4.3.1, we upper bound such term

D jDi1 . . .Dik−1 ≥ γ
s∑

l=1

Dl = γsD̄, (4.10)

whereγ > 0 depends on the matrices inD and D̄ is a doubly stochastic matrix with

positive entries

D̄ =
1
s

s∑

i

Di .

SinceGD is strongly connected, the same is true forGD̄. Therefore,D̄ corresponds

to an irreducible, aperiodic (̄D has positive diagonal entries) and hence ergodic, Markov

chain. By inequality (4.10), it follows that the matrix product D jDi1 . . .Dik−1 is ergodic.

This is enough to infer thatA(k)
i j is ergodic as well, since is a result of a convex combina-

tion of (doubly) stochastic matrices with at least one ergodic matrix in the combination.

Choose ak∗ large enough such that for all non-zerop(k∗)
i j , the matricesA(k∗)

i j are ergodic

∀i, j. Suchk∗ always exists due to irreducibility assumption onP. Then according to

Lemma 4.3.3, we have that for the subsequence{tm}m≥0, with tm=mk∗

lim
m→∞

d

(

Qtm,P′∞⊗
(

1
n
11
′
))

= 0. (4.11)

The result follows by Proposition 4.3.1 since‖Q‖1 ≤ 1 and sinceQ
(

P′∞⊗
(

1
n11

′
))

=

P′∞⊗
(

1
n11

′
)

.

�

Lemma 4.3.5.Under the same assumptions as in Lemma 4.3.4, if we define the matrix

blocks of Q as Qi j , p ji D j ⊗D j , thenP′∞⊗
(

1
n211

′
)

is the limit set of the sequence{Qk}k≥1,

i.e.

lim
k→∞

d

(

Qk,P′∞⊗
(

1

n2
11
′
))

,
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where the vector1 above has dimension n2.

Proof. In the current setup (4.9) becomes:

(Qk)i j =
∑

1≤i1,...ik−1≤s

p ji1 pi1i2 . . . pik−1i(D j ⊗D j)(Di1⊗Di1) . . . (Dik−1 ⊗Dik−1). (4.12)

The result follows from the same arguments used in Lemma 4.3.4 together with the fact

that the matrix products in (4.12) can be written as (D j ⊗D j)(Di1⊗Di1) . . . (Dik−1⊗Dik−1) =

(D jDi1 . . .Dik−1)⊗ (D jDi1 . . .Dik−1) and with the observation that the Kronecker product of

an ergodic matrix with itself produces an ergodic matrix as well. �

4.3.3 Preliminary results for the case where the agents’ dynamics are

expressed in continuous-time

The following two lemmas emphasize geometric properties oftwo matrices aris-

ing from the linear dynamics of the first and second moment of the state vector, in the

continuous-time case.

Lemma 4.3.6. Let s be a positive integer and letC = {Ci}si=1 be a set of n× n doubly

stochastic matrices such that GC is strongly connected. Consider also a s× s generator

matrixΛ = (λi j ) corresponding to an irreducible Markov chain with stationary distribu-

tion π = (πi). Define the matrices A, diag(C′i , i = 1. . . s) and B, Λ⊗ I. Then A+B has

an eigenvalueλ = 0 with algebraic multiplicity one and with corresponding right and left

eigenvectors given by1ns and(π11
′
n,π21

′
n, . . . ,πs1

′
n), respectively.

Proof. We first note thatA+B is a generator matrix and that bothA andB are block diag-

onalizable (indeedA has doubly stochastic matrices on its main diagonal andB contains
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n copies of the irreducible Markov chain corresponding toΛ). Therefore,A+B has an

eigenvalueλ = 0 with algebraic multiplicity at least one.

Let v be a vector in the null space ofA+ B. By Lemma 4.3.2, we have thatv ∈

Null(A) andv ∈ Null(B). Given the structure ofB, v must respect the following pattern

v′ = {(u′ u′ . . .u′
︸     ︷︷     ︸

s times

) | u ∈ Rn}. But sincev ∈ Null(A), we have thatC′i u = 0, i = 1. . . s, or

Cu= 0, whereC =
∑s

i=1C′i . SinceGC was assumed strongly connected,C corresponds to

an irreducible Markov chain, and it follows thatu must be of the formu= α1, for some

α ∈ R. By backtracking, we get thatv= α1, for someα ∈ R and consequentlyNull(A+

B) = span(1). Therefore,λ = 0 has algebraic multiplicity one, with right eigenvector

given by1. By simple verification we note that (π11
′,π21

′, . . . ,πs1
′) is a left eigenvector

corresponding to the eigenvalueλ = 0. �

Lemma 4.3.7. Let s be a positive integer and letC = {Ci}si=1 be a set of n× n doubly

stochastic matrices such that GC is strongly connected. Consider also a s× s generator

matrixΛ = (λi j ) corresponding to an irreducible Markov chain with stationary distribu-

tion π = (πi). Define the matrices A, diag(C′i ⊕C′i , i = 1. . . s) and B, Λ⊗ I. Then A+B

has an eigenvalueλ = 0 with algebraic multiplicity one, with corresponding rightand left

eigenvectors given by1n2s and(π11
′
n2,π21

′
n2, . . . ,πs1

′
n2), respectively.

Proof. It is not difficult to check thatA+ B is a generator matrix. Also we note that

C′i ⊕C′i = C′i ⊗ I + I ⊗C′i is block diagonalizable since bothC′i ⊗ I and I ⊗C′i are block

diagonalizable. Indeed, sinceCi is doubly stochastic then it is block diagonalizable. The

matrix C′i ⊗ I containsn isolated copies ofC′i and therefore it is block diagonalizable.

Also, I ⊗C′i it has a number ofn block on its diagonal, each block being given byC′i , and
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it follows is block diagonalizable as well.

Let v be a vector in the nullspace ofA+B. By Lemma 4.3.2,v ∈ Null(A) andv ∈

Null(B). From the structure ofB we note thatv must be of the formv′ = (u′, . . . ,u′
︸   ︷︷   ︸

s times

)′ | u ∈

R
n2

. Consequently we have that (C′i ⊕C′i )u = 0, i = 1, . . . s, or (C⊗C)u = 0, whereC =

∑s
i=1C′i . Since,GG is strongly connected,C is a generator matrix corresponding to an

irreducible Markov chain. By applying again Lemma 4.3.2 forthe matrixC⊕C = I ⊗C+

C⊗ I , we get thatu must have the formu′ = (ū′, . . . , ū′
︸   ︷︷   ︸

n times

)′, whereū ∈ Rn andCū= 0. But

C is irreducible and therefore ¯u = α1n, or u = α1n2, or finally v = α1n2s, whereα ∈ R.

Consequently,Null(A+ B) = span(1) which means the eigenvalueλ = 0 has algebraic

multiplicity one. By simple verification, we note that (π11
′
n2,π21

′
n2, . . . ,πs1

′
n2) is a left

eigenvector corresponding to the zero eigenvalue. �

4.4 Proof of the convergence theorem

The proof will focus on showing that the state vectorx(t) converges in mean square

sense to average consensus. Equivalently, by making the change of variablez(t) = x(t)−

av(x0)1, we will actually show thatz(t) is mean square stable for the initial condition

z(0) = x0− av(x0)1, wherez(t) respects the same dynamic equation asx(t). Using re-

sults for the stability theory of Markovian jump linear systems, mean square stability

also imply stability in the almost sure sense (see for instance Corollary 3.46 of [11] for

discrete-time case or Theorem 2.1 of [15] for continuous-time case, with the remark that

we are interested for the stability property to be satisfied for a specific initial condition,

rather then for any initial condition), which for us imply that x(t) converges almost surely

118



to average consensus.

We first prove the discrete-time case after which we continuewith the proof for the

continuous-time case.

4.4.1 Discrete-time case - Sufficiency

Proof. Let V(t) denote the second moment of the state vector

V(t) , E[x(t)x(t)T ],

where we usedE to denote the expectation operator. The matrixV(t) can be expressed as

V(t) =
s∑

i=1

Vi(t), (4.13)

whereVi(t) is given by

Vi(t) , E[x(t)x(t)Tχ{θ(t)=i}] i = 1. . . s, (4.14)

with χ{θ(t)=i} being the indicator function of the event{θ(t) = i}.

The set of discrete coupled Lyapunov equations governing the evolution of the ma-

tricesVi(t) are given by

Vi(t+1)=
s∑

j=1

p ji D jV j(t)D
T
j , i = 1. . . s, (4.15)

with initial conditionsVi(0)= qi x0xT
0 . By definingη(t) , col(Vi(t), i = 1. . . s), we obtain a

vectorized form of equations (4.15)

η(t+1)= Γdη(t), (4.16)
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whereΓd is ann2s×n2smatrix given by

Γd =





p11D1⊗D1 . . . ps1Ds⊗Ds

...
. . .

...

p1sD1⊗D1 . . . pssDs⊗Ds





andη0 =





q1col(x0x′0)

...

qscol(x0x′0)





. (4.17)

We note thatΓd satisfies all the assumptions ofLemma 4.3.5and hence we get

lim
k→∞

d

(

Γk
d,P

′
∞⊗

(

1

n2
11
′
))

= 0,

whereP∞ is the limit set of the matrix sequence{Pk}k≥0. Using the observation that

1

n2
11
′col(x0x′0) = av(x0)2

1,

the limit of the sequence{η(tk)}k≥0, where{tk}k≥0 is such that limk→∞(Ptk)i j = p∞i j , is

lim
k→∞

η(tk)
′ = av(x0)2





∑s
j=1 p∞j1q j1

...

∑s
j=1 p∞jsq j1

′





.

By collecting the entries of limk→∞ η(tk) we obtain

lim
k→∞

Vi(tk) = av(x0)2





s∑

j=1

p∞ji q j




11
′,

and from (4.13) we get

lim
k→∞

V(tk) = av(x0)2
11
′ (4.18)

since
∑s

i, j=1 p∞ji q j = 1. By repeating the previous steps for all subsequences generating

limit points for {Pk}k≥0 we obtain that (4.18) holds for any sequence inN.
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Through a similar process as in the case of the second moment (in stead of Lemma

4.3.5 we use Lemma 4.3.4), we show that:

lim
k→∞

E[x(t)] = av(x0)1. (4.19)

From (4.18) and (4.19) we have that

lim
t→∞

E[‖x(t)−av(x0)1‖2] = lim
t→∞

trace(E[(x(t)−av(x0)1)(x(t)−av(x0)1)′]) =

= lim
t→∞

trace(E[x(t)x(t)′] −av(x0)1E[x(t)′] −av(x0)E[x(t)]1′+av(x0)2
11
′) = 0.

Therefore,x(t) converges to average consensus in the mean square sense, and conse-

quently in the almost sure sense, as well. �

4.4.2 Discrete-time case - Necessity

Proof. If GA is not strongly connected then by Corollary 4.3.2,dim(
⋂s

i=1 Null(Ai − I )) >

1. Consequently, there exist a vectorv ∈⋂s
i=1 Null(Ai − I )) such thatv < span(1). If we

choosev as initial condition, for every realization ofθ(t), we have that

x(t) = v, for all t ≥ 0,

and therefore consensus can not be reached in the sense of Definition 4.2.1. �

4.4.3 Continuous time - Sufficiency

Using the same notations as in the discrete-time case, the dynamic equations de-

scribing the evolution of the second moment ofx(t) are given by

d
dt

Vi(t) =CiVi(t)+Vi(t)C
′
i +

s∑

j=1

λ jiV j(t), i = 1. . . s, (4.20)
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equations whose derivation is treated in [16]. By defining the vectorη(t) , col(Vi(t), i =

1. . . s), the vectorized equivalent of equations (4.20) is given by

d
dt
η(t) = Γcη(t), (4.21)

where

Γc =





C1⊕C1 0 · · · 0

0 C2⊕C2 · · · 0

... · · · . . .
...

0 0 · · · Cs⊕Cs





+Λ′⊗ I andη0 =





q1col(x0x′0)

q2col(x0x′0)

...

qscol(x0x′0)





.

By Lemma 4.3.7, the eigenspace corresponding to the zero eigenvalue ofΓc has di-

mension one, with unique (up to the multiplication by a scalar) left and right eigenvectors

given by1n2s and 1
n2 (π11

′
n2,π21

′
n2, . . . ,πs1

′
n2), respectively. SinceΓ′c is a generator matrix

with an eigenvalue zero of algebraic multiplicity one, by Corollary 4.3.4 we have that

limt→∞eΓ
′
ct = v1′, wherev′ = 1

n2 (π11
′,π21

′, . . . ,πs1
′). Therefore, ast goes to infinity, we

have that

lim
t→∞

η(t) =





π1
11
′

n2 · · · π1
11
′

n2

...
. . .

...

πs
11
′

n2 · · · πs
11
′

n2









q1col(x0x′0)

...

qscol(x0x′0)





.

By noting that

11
′

n2
col(x0x′0) = av(x0)2

1n2,

we farther get

lim
t→∞

η(t) = av(x0)2





π11n2

...

πs1n2





.
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Rearranging the columns of limt→∞ η(t), we get

lim
t→∞

Vi(t) = av(x0)2πi11
′,

or

lim
t→∞

V(t) = av(x0)2
11
′.

Through a similar process (using this time Lemma 4.3.6), we can show that

lim
t→∞

E[x(t)] = av(x0)1.

Therefore,x(t) converges to average consensus in the mean square sense andconsequently

in the almost surely sense.

4.4.4 Continuous time - Necessity

Follows the same lines as in the discrete-time case.

4.5 Discussion

In the previous sections we proved a convergence result for the stochastic, linear

consensus problem, for the cases where the dynamics of the agents were expressed in both

discrete and continuous time. Our main contributions consist of considering a Markovian

process, not necessarily ergodic, as underlying process for the random communication

graph and of using a Markovian jump system theory inspired approach to prove this result.

In what we have shown, we assumed that the Markov processθ(t) was irreducible and that

the matricesDi andCi were doubly stochastic. We can assume for instance thatθ(t) is

not irreducible (i.e.θ(k) may have transient states). We treated this case in [23] (only for
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discrete-time dynamics), and we showed that convergence inthe sense of Definition 4.2.1

is achieved if and only if the union of graphs corresponding to each of the irreducible

closed sets of states of the Markov chain produces a stronglyconnected graph. This

should be intuitively clear since the probability to returnto a transient state converges

to zero as time goes to infinity, and therefore the influence ofthe matricesDi (or Ci),

corresponding to the transient states, is canceled. We can also assume thatDi andCi are

not necessarily doubly stochastic. We treated this case (again only for the discrete-time

dynamics and without being completely rigorous) in [26] andwe showed that the state

converges in mean square sense and in almost sure sense to consensus, and not necessarily

average consensus. From a technical point view, the difference lies in the fact that the

n2×n2 block matrices of{Γt
d}t≥0 (or {etΓc}t≥0) no longer converge toπi

1
n211

′ but toπi1c′,

for some vectorc ∈ Rn2
with non-negative entries summing up to one; vectorc which in

general can not be a priori determined. In relevant distributed computation application

(such as distributed state estimation or distributed optimization) however, convergence

to average consensus is desired, and therefore the assumption, thatDi or Ci are doubly

stochastic, makes sense.

The proof of Theorem 4.2.1 was based on the analysis of two matrix sequences

{eΓct}t≥0 and {Γt
d}t≥0 arising from the dynamic equations of the state’s second moment,

for the continuous and discrete time, respectively. The reader may have noted that we

approached differently the analysis of the two sequences. In the case of continuous-time

dynamics, our approach was based on showing that the left andright eigenspaces induced

by the zero eigenvalue ofΓc have dimension one, and we provided the left and right

eigenvectors (bases of the respective subspaces). The convergence of{eΓct}t≥0 followed
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from Corollary 4.3.4. In the case of the discrete-time dynamics, we analyzed the sequence

{Γt
d}t≥0, by looking at how the matrix blocks ofΓt

d evolve ast goes to infinity. Although,

similar to the continuous-time case, we could have proved properties ofΓd related to the

left and right eigenspaces induced by the eigenvalue one, this would not have been enough

in the discrete-time case. This is because, throughθ(t), Γd can be periodic, in which case

the sequence{Γt
d}t≥0 does not converge (remember that in the discrete-time consensus

problems, the stochastic matrices are assumed to have positive diagonal entries, to avoid

the possibility of being periodic).

In the case of i.i.d. random graphs [44], or more general, in the case of strictly

stationary, ergodic random graphs [45] , a necessary and sufficient condition for reaching

consensus almost surely (in the discrete-time case) is|λ2(E[Dθ(t)])| < 1, whereλ2 denotes

the eigenvalue with second largest modulus. In the case of Markovian random topology a

similar condition, does not necessarily hold, neither for each timet, nor in the limit. Take,

for instance, two (symmetric) stochastic matricesD1 andD2 such that each of the graphs

GD1 andGD2, respectively, are not strongly connected but their union is. If the two state

Markov chainθ(t) is periodic, with transitions given byp11 = p22 = 0 andp12 = p21 = 1,

we note thatλ2(E[Dθ(t)]) = 1, for all t ≥ 0. Also note thatλ2(limt→∞E[Dθ(t)]) does not

exist since the sequence{E[Dθ(t)]}t≥0 does not have a limit. Yet, consensus is reached.

The assumption that allowed for the aforementioned necessary and sufficient condition to

hold, was thatθ(t) is a stationary process (which in turn implies thatE[Dθ(t)] is constant

for all t ≥ 0). However, this is not necessarily true ifθ(t) is a (homogeneous) irreducible

Markov chain,unlessthe initial distribution is the stationary distribution.

For the discrete-time case we can formulate a result involving the second largest
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eigenvalue of the time average expectation ofDθ(t), i.e. limN→∞
∑N

t=1 E[Dθ(t)]
N , which reflects

the proportion of timeDθ(t) spends in each state of the Markov chain.

Proposition 4.5.1.Consider the stochastic system (4.1). Then, under Assumption 4.2.1,

the state vector x(t) converges to average consensus in the sense of Definition 4.2.1, if

and only if
∣
∣
∣
∣
∣
∣
∣

λ2



 lim
N→∞

∑N
t=0 E[Dθ(t)]

N





∣
∣
∣
∣
∣
∣
∣

< 1.

Proof. The time average ofE[Dθ(t)] can be explicitly written as

lim
N→∞

∑N
t=0 E[Dθ(t)]

N
=

s∑

i=1

πiDi = D̄,

whereπ = (πi) is the stationary distribution ofθ(t). By Corollary 3.5 in [39],|λ2(D̄)| < 1

if and only if the graph corresponding tōD has a spanning tree, or in our case, is strongly

connected. But the graph corresponding toD̄ is the same asGD, and the result follows

from Theorem 4.2.1. �

Unlike the discrete-time, in the case of continuous time dynamics, we know that if

there exists a stationary distributionπ (under the irreducibility assumption), the probabil-

ity distribution ofθ(t) converges toπ, hence the time averaging is not necessary. In the

following we introduce (without proof since basically it issimilar to the proof of Proposi-

tion 4.5.1) a necessary and sufficient condition for reaching average consensus, involving

the expected value of the second largest eigenvalue ofCθ(t), for the continuous-time dy-

namics.

Proposition 4.5.2.Consider the stochastic system (4.2). Then, under Assumption 4.2.1,

the state vector x(t) converges to average consensus in the sense of Definition 4.2.1, if
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and only if

Re
(

λ2

(

lim
t→∞

E[Cθ(t)]
))

< 0.

Our analysis provides also estimates on the rate of convergence to average con-

sensus in the mean square sense. From linear dynamic equations of the state’s second

moment we notice that the eigenvalues ofΓd andΓc dictates how fast the second moment

converges to average consensus. SinceΓ′d is a probability transition matrix and sinceΓ′c

is a generator matrix, an estimate of the rate of convergenceof the second moment ofx(t)

to average consensus is given by the second largest eigenvalue (in modulus) ofΓd, for

the discrete-time case, and by the real part of the second largest eigenvalue ofΓc, for the

continuous time case.
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Chapter 5

Distributed Consensus-Based Linear Filtering

5.1 Introduction

In this chapter we address the consensus-based distributedlinear filtering problem

as well. We assume that each agent updates its (local) estimate in two steps. In the first

step, an update is produced using a Luenberger observer typeof filter. In the second

step, calledconsensus step, every sensor computes a convex combination between its lo-

cal update and the updates received from the neighboring sensors. Our focus isnot on

designing the consensus weights, but on designing thefilter gains. For given consensus

weights, we will first give sufficient conditions for the existence of filter gains such that

the dynamics of the estimation errors (without noise) are asymptotically stable. These

sufficient conditions are also expressible in terms of the feasibility of a set of linear ma-

trix inequalities. Next, we present a distributed (in the sense that each sensor uses only

information available within its neighborhood), sub-optimal filtering algorithm, valid for

time varying topologies as well, resulting from minimizingan upper bound on a quadratic

cost expressed in terms of the covariances matrices of the estimation errors. In the case

where the matrices defining the stochastic process and the consensus weights are time

invariant, we present sufficient conditions such that the aforementioned distributedal-

gorithm produces filter gains which converge and ensure the stability of the dynamics

of the covariances matrices of the estimation errors. We will also present a connection
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between the consensus-based linear filter and the linear filtering of an appropriately de-

fined Markovian jump linear system. More precisely, we show that if the aforementioned

Markovian jump linear system is (mean square) detectable then the stochastic process is

detectable as well under the consensus-based distributed linear filtering scheme. Finally

we show that the optimal gains of a linear filter for the state estimation of the Markovian

jump linear system can be used to approximate the optimal gains of the consensus-based

distributed linear filtering strategy.

Chapter structure: In Section 5.2 we describe the problems addressed in this chap-

ter. Section 5.3 introduces the sufficient conditions for detectability under the consensus-

based linear filtering scheme together with a test expressedin terms of the feasibility of a

set of linear matrix inequalities. In Section 5.4 we presenta sub-optimal distributed con-

sensus based linear filtering scheme with quantifiable performance. Section 5.5 makes

a connection between the consensus-based distributed linear filtering algorithm and the

linear filtering scheme for a Markovian jump linear system.

Notations and Abbreviations: We represent the property of positive (semi-positive)

definiteness of a symmetric matrixA, by A� 0 (A� 0). By convention, we say that a sym-

metric matrixA is negative definite(semi-definite) if −A� 0 (−A� 0) and we denote this

by A≺ 0 (A� 0). By A� B we understand thatA−B is positive definite. Given a set of

square matrices{Ai}Ni=1, by diag(Ai, i = 1. . .N) we understand the block diagonal matrix

which contains the matricesAi ’s on the main diagonal. We use the abbreviations CBDLF,

MJLS and LMI for consensus-based linear filter(ing), Markovian jump linear system and

linear matrix inequality, respectively.
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Remark 5.1.1. Given a positive integer N, a set of vectors{xi}Ni=1, a set of non-negative

scalars{pi}Ni=1 summing up to one and a positive definite matrix Q, the following holds





N∑

i=1

pi xi





′

Q





N∑

i=1

pi xi




≤

N∑

i=1

pi x
′
i Qxi .

Remark 5.1.2.Given a positive integer N, a set of vectors{xi}Ni=1, a set of matrices{Ai}Ni=1

and a set of non-negative scalars{pi}Ni=1 summing up to one, the following holds





N∑

i=1

piAi xi









N∑

i=1

piAi xi





′

�
N∑

i=1

piAi xi x
′
i A
′
i . (5.1)

5.2 Problem formulation

We consider a stochastic process modeled by a discrete-timelinear dynamic equa-

tion

x(k+1)= A(k)x(k)+w(k), x(0)= x0, (5.2)

wherex(k) ∈ Rn is the state vector andw(k) ∈ Rn is a driving noise, assumed Gaussian

with zero mean and (possibly time varying) covariance matrix Σw(k). The initial condition

x0 is assumed to be Gaussian with meanµ0 and covariance matrixΣ0. The state of the

process is observed by a network ofN sensors indexed byi, whose sensing models are

given by

yi(k) =Ci(k)x(k)+vi (k), i = 1. . .N, (5.3)

whereyi(k) ∈ Rr i is the observation made by sensori andvi(k) ∈ Rr i is the measurement

noise, assumed Gaussian with zero mean and (possibly time varying) covariance matrix

Σvi (k). We assume that the matrices{Σvi (k)}Ni=1 andΣw(k) are positive definite fork ≥ 0

and that the initial statex0, the noisesvi(k) andw(k) are independent for allk ≥ 0. For
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later reference we also defineΣ1/2
vi

(k), Σ1/2
w (k), whereΣvi (k) , Σ1/2

vi
(k)Σ1/2

vi
(k)
′
andΣw(k) ,

Σ
1/2
w (k)Σ1/2

w (k)
′
.

The set of sensors form a communication network whose topology is modeled by a

directed graph that describes the information exchanged among agents. The goal of the

agents is to (locally) compute estimates of the state of the process (5.2).

Let x̂i(k) denote the state estimate computed by sensori at timek and letεi(k) denote

the estimation error, i.e.εi(k) , x(k)− x̂i (k). The covariance matrix of the estimation error

of sensori is denoted byΣi(k) , E[εi(k)εi(k)′], with Σi(0)= Σ0.

The sensors update their estimates in two steps. In the first step, an intermediate

estimate, denoted byϕi(k), is produced using a Luenberger observer filter

ϕi(k) = A(k)x̂i(k)+Li(k)(yi(k)−Ci(k)x̂i(k)), i = 1. . .N, (5.4)

whereLi(k) is thefilter gain.

In the second step, the new state estimate of sensori is generated by a convex

combination betweenϕi(k) and all other intermediate estimates within its communication

neighborhood, i.e.

x̂i(k+1)=
N∑

j=1

pi j (k)ϕ j(k), i = 1. . .N, (5.5)

wherepi j (k) are non-negative scalars summing up to one (
∑N

j=1 pi j (k) = 1), andpi j (k) = 0

if no link from j to i exists at timek. Having pi j (k) dependent on time accounts for a

possibly time varying communication topology.

Combining (5.4) and (5.5) we obtain the dynamic equations for the consensus based

131



distributed filter:

x̂i(k+1)=
N∑

j=1

pi j (k)
[

A(k)x̂ j(k)+L j(k)
(

y j(k)−C j(k)x̂ j(k)
)]

, i = 1. . .N. (5.6)

From (5.6) the estimation errors evolve according to

εi(k+1)=
N∑

j=1

pi j (k)
[(

A(k)−L j (k)C j(k)
)

ε j(k)+w(k)−L j (k)v j(k)
]

, i = 1. . .N. (5.7)

We define the aggregate vectors of estimates, measurements,estimation errors, driv-

ing noise and measurements noise, respectively

x̂(k)′ , (x̂1(k)′, . . . , x̂N(k)′),

y(k)′ , (y1(k)′, . . . ,yN(k)′),

ε(k)′ , (ε1(k)′, . . . , εN(k)′),

w(k)′ , (w(k)′, . . . ,w(k)′),

v(k)′ , (v1(k)′, . . . ,vN(k)′),

and the following block matrices

A(k) ,





A(k) On×n · · · On×n

On×n A(k) · · · On×n

...
...

. . .
...

On×n On×n · · · A(k)





∈RnN×nN,

C(k) ,





C1(k) Or2×n · · · OrN×n

Or1×n C2(k) · · · OrN×n

...
...

. . .
...

Or1×n Or2×n · · · CN(k)





∈Rr×nN, L(k) ,





L1(k) On×r1 · · · On×rN

On×r1 L2(k) · · · On×rN

...
...

. . .
...

On×r1 On×r2 · · · LN(k)





∈RnN×r ,
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wherer =
∑N

i=1 r i . The dynamics (5.6) and (5.7) can be compactly written as

x̂(k+1)= P(k)A(k)x̂(k)+P(k)L(k)[y(k)−C(k)x̂(k)], (5.8)

ε(k+1)= P(k)[A(k)−L(k)C(k)]ε(k)+w(k)−P(k)L(k)v((k), (5.9)

whereP(k) = P(k)⊗ I andP(k) = (pi j (k)) is a stochastic matrix, with rows summing up to

one.

Definition 5.2.1. (distributed detectability) Assuming that A(k), C(k) , {Ci(k)}Ni=1 and

p(k) , {pi j (k)}Ni, j=1 are time invariant, we say that the linear system (5.2) is detectable

using the CBDLF scheme (5.6), if there exist a set of matricesL , {Li}Ni=1 such that the

system (5.7), without the noise inputs, is asymptotically stable.

We introduce the following finite horizon quadratic filtering cost function

JK(L (·)) =
K∑

k=0

N∑

i=1

E[‖εi(k)‖2], (5.10)

where byL (·) we understand the set of matricesL (·) , {Li(k),k = 0. . .K − 1}Ni=1. The

optimal filtering gains represent the solution of the following optimization problem

L ∗(·) = argmin
L(·)

JK(L (·)). (5.11)

Assuming thatA(k), C(k) , {Ci(k)}Ni=1, Σw(k), Σv(k) , {Σvi (k)} andp(k) , {pi j (k)}Ni, j=1 are

time invariant, we can also define the infinite horizon filtering cost function

J∞(L ) = lim
K→∞

1
K

JK(L ) = lim
k→∞

N∑

i=1

E[‖εi(k)‖2], (5.12)

whereL , {Li}Ni=1 is the set of steady state filtering gains. By solving the optimization

problem

L ∗ = argmin
L

J∞(L ), (5.13)

133



we obtain the optimal steady-state filter gains.

In the next sections we will address the following problems:

Problem 5.2.1. (Detectability conditions) Under the above setup, we want to find condi-

tions under which the system (5.2) is detectable in the senseof Definition 5.2.1.

Problem 5.2.2. (Sub-optimal scheme for consensus based distributed filtering) Ideally,

we would like to obtain the optimal filter gains by solving theoptimization problems

(5.11) and (5.13), respectively. Due to the complexity of these problems, we will not

provide the optimal filtering gains but rather focus on providing a sub-optimal scheme

with quantifiable performance.

Problem 5.2.3. (Connection with the linear filtering of a Markovian jump linear system)

We make a parallel between the consensus-based distributedlinear filtering scheme and

the linear filtering of a particular Markovian jump linear system.

5.3 Distributed detectability

We start with a toy example motivating our interest in the distributed detectability

problem under the CBDLF scheme. Let us assume that no single pair (A,Ci) is detectable

in the classical sense, but the pair (A,C) is detectable, whereC′ = (C′1, . . . ,C
′
N). In this

case, we can design a stable (centralized) Luenberger observer filter. The question is,

can we obtain a stable consensus-based distributed filter? As the following example will

show, in general this is not true. That is why it is important to find conditions under which

the CBDLF can produce stable estimates.
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Example 5.3.1.(Centralized detectable but not distributed detectable) Consider a linear

dynamics as in (5.2-5.3), with two sensors, where

A=





10 0

0 10





, C1 = ( 1 0 ) and C2 = ( 0 1 ).

Obviously, the pairs(A,C1) and (A,C2) are not detectable while the pair(A,C) is,

where C′ = (C′1 C′2) is. Let L′1 = (l1 l2) and L′2 = (l3 l4). For this example, the matrix that

dictates the stability property of (5.9) is given by

A =





p11(10− l1) 0 10p12 −p12l3

−p11l2 10p11 0 p12(10− l4)

p21(10− l1) 0 10p22 −p22l3

−p21l2 10p21 0 p22(10− l4)





For p11 = 0.9, p12 = 0.1, p21 = 0.7 and p22 = 0.3, the characteristic polynomial of the

above matrix is given by

q(s) = s4+q3(l1, l3)s3+q2(l1, l4, l2l3)s2+q1(l1, l4)+q0(l1, l4),

where

q3(l1, l3) = −24+0.9l1+0.3l4,

q2(l1, l4, l2l3) = −0.07l2l3−5.6l4+184−12.8l1+0.27l1l4,

q1(l1, l4) = 30l4−480−2.4l1l4+42l1,

q0(l1, l4) = −40l1−40l4+4l1l4+400.

Letλi(l1, l4, l2l3) denote the eigenvalues ofA. We defineλmax(l1, l4, l2l3)=maxi |λi(l1, l4, l2l3)|.

The system (5.2-5.3) is not detectable in the sense of Definition 5.2.1 ifλmax(l1, l4, l2l3)> 1
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Proof. Rewrite the matrixC as

C =
N∑

i=1

C̄i ,

whereC̄′i = (On×r1 . . .On×r i−1 C′i On×r i+1 . . .On×rN). Ignoring the noise, we define the mea-

surements

ȳi(k) = C̄i x(k),

which are equivalent to the ones in (5.3). Under the assumption thatpi j =
1
N and x̂i = x0

for all i, j = 1. . .N, it follows that the estimation errors respect the dynamics

ε(k+1)=
1
N

N∑

i=1

(A−LiC̄i)ε(k). (5.14)

SettingLi = NL for i = 1. . .N, it follows that

ε(k+1)= (A−LC)ε(k).

Since the pair (A,C) is detectable, there exists a matrixL such thatA− LC has all eigen-

values within the unit circle and therefore the dynamics (5.14) is asymptotically stable,

which implies that (5.2) is detectable in the sense of Definition 5.2.1. �

The previous proposition tells us that if we achieve (average) consensus between

the state estimates at each time instant, and if the pair (A,C) is detectable (in the classical

sense), then the system (5.2) is detectable in the sense of Definition 5.2.1. However,

achieving consensus at each time instant can be time and numerically costly and that is

why it is important to find (testable) conditions under whichthe CBDLF produces stable

estimates.

Lemma 5.3.1. (sufficient conditions for distributed detectability) If there exists a set of
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symmetric, positive definite matrices{Qi}Ni=1 and a set of matrices{Li}Ni=1 such that

Qi =

N∑

j=1

p ji (A−L jC j)
′Q j(A−L jC j)+Si, i = 1. . .N, (5.15)

for some positive definite matrices{Si}Ni=1, then the system (5.2) is detectable in the sense

of Definition 5.2.1.

Proof. The dynamics of the estimation error without noise is given by

εi(k+1)=
N∑

j=1

pi j (A−L jC j)ε j(k), i = 1. . .N. (5.16)

In order to prove the stated result we have to show that (5.16)is asymptotically

stable. We define the Lyapunov function

V(k) =
N∑

i

xi(k)′Qi xi(k),

and our goal is to show thatV(k+1)−V(k) < 0 for all k ≥ 0. The Lyapunov difference is

given by

V(k+1)−V(k)=
N∑

i=1





N∑

j=1

pi j (A−L jC j)ε j(k)





′

Qi





N∑

j=1

pi j (A−L jC j)ε j(k)




−εi(k)′TQiεi(k)≤

≤
N∑

i=1





N∑

j=1

pi j ε j(k)′(A−L jC j)
′Qi(A−L jC j)ε j(k)




− εi(k)′Qiεi(k), (5.17)

where the inequality followed from Remark 5.1.1. By changing the summation order we

can further write

V(k+1)−V(k) ≤
N∑

i=1

εi(k)′





N∑

j=1

p ji (A−L jC j)
′Q j(A−L jC j)−Qi




εi(k).

Using (5.15) yields

V(k+1)−V(k) ≤ −
N∑

i=1

εi(k)′Siεi(k)

138



From the fact that{S j}Nj=1 are positive definite matrices, we get

V(k+1)−V(k) < 0,

which implies that (5.16) is asymptotically stable. �

The following result relates the existence of the sets of matrices{Qi}Ni=1 and{Li}Ni=1

such that (5.15) is satisfied, with the feasibility of a set oflinear matrix inequalities (LMI).

Proposition 5.3.2. (distributed detectability test) The linear system (5.2) is detectable in

the sense of Definition 5.2.1 if the following linear matrix inequalities, in the variables

{Xi}Ni=1 and{Yi}Ni=1, are feasible




Xi
√

p1i(A′X1−C′1Y
′
1)
√

p2i (A′X2−C′2Y
′
2) · · · √pNi(A′XN−C′NY′N)

√
p1i(X1A−Y1C1) X1 0 · · · 0

√
p2i(X2A−Y2C2) 0 X2 · · · 0

...
...

...
. . .

...

√
pNi(XNA−YNCN) 0 0 · · · XN





> 0,

(5.18)

for i = 1. . .N and where{Xi}Ni=1 are symmetric. Moreover, a stable CBDLF is obtained

by choosing the filter gains as Li = X−1
i Yi for i = 1. . .N.

Proof. First we note that, by the Schur complements Lemma, the linear matrix inequali-

ties (5.18) are feasible if and only if there exist a set a symmetric matrices{Xi}Ni=1 and a

set of matrices{Yi}Ni=1, such that

Xi −
N∑

j=1

(X jA−YjC j)
′X−1

j (X jA−YjC j) > 0, Xi > 0

for all i = 1. . .N. We further have that,

Xi −
N∑

j=1

(A−X−1
j YjC j)

′X j(X jA−X−1
j YjC j) > 0, Xi > 0
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By definingLi , X−1
i Yi , it follows that

Xi −
N∑

j=1

(A−L jC j)
′X j(A−L jC j) > 0, Xi > 0.

Therefore, if the matrix inequalities (5.18) are feasible,there exists a set of positive defi-

nite matrices{Xi}Ni=1 and a set of positive matrices{Si}Ni=1, such that

Xi =

N∑

j=1

(A−L jC j)
′X j(A−L jC j)+Si .

By Lemma 5.3.1, it follows that the linear dynamics (5.7), without noise, is asymptotically

stable, and therefore the system (5.2 is detectable in the sense of Definition 5.2.1. �

5.4 Sub-Optimal Consensus-Based Distributed linear Filtering

Obtaining the closed form solution of the optimization problem (5.11) is a challeng-

ing problem, which is in the same spirit as the decentralizedoptimal control problem. In

this section we provide a sub-optimal algorithm for computing the filter gains of the CB-

DLF, with quantifiable performance in the sense that we compute a set of filtering gains

which guarantee a certain level of performance with respectthe quadratic cost (5.10).

5.4.1 Finite Horizon Sub-Optimal Consensus-Based Distributed Linear

Filtering

The sub-optimal scheme for computing the CBDLF gains results from minimizing

an upper bound of the quadratic filtering cost (5.10). The following proposition gives

upper-bounds for the covariance matrices of the estimationerrors.
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Proposition 5.4.1.Consider the following coupled difference equations

Qi(k+1)=
N∑

i=1

pi j (k)
[(

A(k)−L j (k)C j(k)
)

Q j(k)
(

A(k)−L j (k)C j(k)
)′
+

+L j(k)Σv j (k)L j(k)
]

+Σw(k), (5.19)

with Qi(0)= Σi(0), for i = 1. . .N. The following inequality holds

Σi(k) � Qi(k), (5.20)

for i = 1. . .N and for all k≥ 0.

Proof. Using (5.7), the matrixΣi(k+1) can be explicitly written as

Σi(k+1)= E[εi(k+1)′εi(k+1)] =

= E









N∑

j=1

pi j (k)
(

A(k)−L j (k)C j(k)
)

ε j(k)+w(k)−
N∑

j=1

pi j (k)L j (k)v j(k)





′





N∑

j=1

pi j (k)
(

A(k)−L j (k)C j(k)
)

ε j(k)+w(k)−
N∑

j=1

pi j (k)L j(k)v j(k)








.

Using the fact that the noisesw(k) andvi(k) have zero mean, and they are independent

with respect to themselves and the initial state, for every time instant, we can further

write

Σi(k+1)= E









N∑

j=1

pi j (k)
(

A(k)−L j(k)C j(k)
)

ε j(k)





′ 


N∑

j=1

pi j (k)
(

A(k)−L j (k)C j(k)
)

ε j(k)








+

+E









N∑

j=1

pi j (k)L j(k)v j(k)





′ 


N∑

j=1

pi j (k)L j(k)v j(k)








+Σw(k).

By Remark 5.1.2, it follows that

E









N∑

j=1

pi j (k)
(

A(k)−L j(k)C j(k)
)

ε j(k)





′ 


N∑

j=1

pi j (k)
(

A(k)−L j (k)C j(k)
)

ε j(k)








�
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�
N∑

j=1

pi j (k)
(

A(k)−L j (k)C j(k)
)

Σ j(k)
(

A(k)−L j(k)C j(k)
)′

and

E









N∑

j=1

pi j (k)L j(k)v j(k)





′ 


N∑

j=1

pi j (k)L j (k)v j(k)








�

N∑

j=1

pi j (k)L j (k)Σv j (k)L j(k)′, i = 1. . .N.

From the previous two expressions, we obtain that

Σi(k+1)�
N∑

j=1

pi j (k)
(

A(k)−L j (k)C j(k)
)

Σ j(k)
(

A(k)−L j(k)C j(k)
)′
+

+

N∑

j=1

pi j (k)L j (k)Σv j (k)L j (k)+Σw(k)

We prove (5.20) by induction. Assume thatΣi(k) � Qi(k) for all i = 1. . .N. Then

(A(k)−Li (k)Ci(k))Σi(k) (A(k)−Li (k)Ci(k))′ � (A(k)−Li(k)Ci(k))Qi(k) (A(k)−Li (k)Ci(k))′ ,

and

Li(k)Σi(k)Li(k)′ � Li(k)Qi(k)Li(k)′, i = 1. . .N.

and therefore

Σi(k+1)� Qi(k+1), i = 1. . .N.

�

Defining the finite horizon quadratic cost function

J̄K(L (·)) =∑K
k=1

∑N
i=1 tr(Qi(k)), (5.21)

the next Corollary follows immediately.

Corollary 5.4.1. The following inequalities hold

JK(L(·)) ≤ J̄K(L(·)), (5.22)
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and

limsup
K→∞

1
K

JK(L) ≤ limsup
K→∞

1
K

J̄K(L) (5.23)

Proof. Follows immediately from Proposition 5.4.1. �

In the previous Corollary we obtained an upper bound on the filtering cost function.

Our sub-optimal consensus based distributed filtering scheme will result from minimizing

this upper bound in terms of the filtering gains{Li(k)}Ni=1:

min
L (·)

J̄K(L (·)). (5.24)

Proposition 5.4.2.The optimal solution for the optimization problem (5.24) is

L∗i (k) = A(k)Q∗i (k)Ci(k)′
[

Σvi (k)+Ci(k)Q∗i (k)Ci(k)′
]−1

, (5.25)

and the optimal value is given by

J̄∗K(L∗(·)) =
K∑

k=1

N∑

i=1

tr(Q∗i (k)),

where Q∗i (k) is computed using

Q∗i (k+1)=
∑N

j=1 pi j (k)
[

A(k)Q∗j (k)A(k)′ +Σw(k)−A(k)Q∗j (k)C j(k)′·

·
(

Σv j (k)+C j(k)Q∗j (k)C j(k)′
)−1

C j(k)Q∗j (k)A(k)′
]

,

(5.26)

with Q∗i (0)= Σi(0) and for i= 1. . .N.

Proof. Let J̄K(L (·)) be the cost function when an arbitrary set of filtering gains L (·) ,

{Li(k),k= 0. . .K−1}Ni=1 is used in (5.19). We will show that̄J∗K(L ∗(·))≤ J̄K(L (·)), which in

turn will show thatL ∗(·), {Li(k)∗,k= 0. . .K−1}Ni=1 is the optimal solution of the optimiza-

tion problem (5.24). Let{Q∗i (k)}Ni=1 and{Qi(k)}Ni=1 be the matrices obtained whenL ∗(·) and
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L (·), respectively are substituted in (5.19). In what follows we will show by induction that

Q∗i (k) � Qi(k) for k ≥ 0 andi = 1. . .N, which basically proves that̄J∗K(L ∗(·)) ≤ J̄K(L (·)),

for anyL (·). For simplifying the proof, we will omit in what follows thetime index for

some matrices and for the consensus weights.

Substituting{L∗i (k),k≥ 0}Ni=1 in (5.19), after some matrix manipulations we get

Q∗i (k+1)=
N∑

j=1

pi j

[

AQ∗j (k)A′+Σw−AQ∗j (k)C′j(Σv j+

+C jQ
∗
j (k)C′j)

−1C jQ
∗
j (k)A′

]

, Q∗i (0)= Σi(0), i = 1. . .N.

We can derive the following matrix identity (for simplicitywe will give up the time

index):

(A+LiCi)Qi(Ai +LiCi)
′+LiΣvi L

′
i = (A+L∗i Ci)Qi(Ai +L∗i Ci)

′+L∗i Σvi L
∗
i
′
+

+(Li −L∗i )(Σvi +CiQiC
′
i )(Li −L∗i ). (5.27)

Assume thatQ∗i (k) � Qi(k) for i = 1. . .N. Using identity (5.27), the dynamics of

Qi(k)∗ becomes

Q∗i (k+1)=
N∑

j=1

pi j

(

(A+L j (k)C j)Q j(k)(A+L j(k)C j)
′+L j (k)Σv j L j(k)′−

−(L j(k)−L∗j (k))(Σv j +C jQ j(k)C′j)(L j(k)−L∗j (k))′ +Σw

)

.

The differenceQ∗i (k+1)−Qi(k+1) can be written as

Qi(k+1)∗−Qi(k+1)=
N∑

j=1

pi j

(

(A+L j(k)C j)(Q
∗
j (k)−Q j(k))(A+L j (k)C j)

′−

−(L j (k)−L∗j (k))(Σv j +C jQ j(k)C′j)(L j(k)−L∗j (k))′
)

.
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SinceΣvi +CiQi(k)C′i is positive definite for allk≥ 0 andi = 1. . .N, and since we assumed

thatQ∗i (k) � Qi(k), it follows thatQ∗i (k+1)� Qi(k+1). Hence we obtain that

J̄∗K(L ∗(·)) ≤ J̄K(L (·)),

for any set of filtering gainsL (·)= {Li(k),k= 0. . .K−1}Ni=1, which concludes the proof.�

We summarize in the following algorithm the sub-optimal CBDLF scheme resulting

from Proposition 5.4.2.

Algorithm 1: Consensus Based Distributed Linear Filtering Algorithm
Input : µ0, P0

Initialization: x̂i(0)= µ0, Yi(0)= Σ0

while new data existsdo
Compute the filter gains:

Li ← AYiC
′
i (Σvi +CiYiC

′
i )
−1

Update the state estimates:

ϕi ← Ax̂i +Li(yi −C− i x̂i)

x̂i ←
∑

j

pi jϕ j

Update the matrices Yi :

Yi ←
N∑

j=1

pi j

(

(A−L jC j)Yj(A−L jC j)
′+L jΣv j L

′
j

)

+Σw

end
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5.4.2 Infinite Horizon Consensus Based Distributed Filtering

We now assume that the matricesA(k), {Ci(k)}Ni=1, {Σvi (k)}Ni=1 andΣw(k) and the

weights{pi j (k)N
i, j=1} are time invariant. We are interested in finding out under what condi-

tions Algorithm 1 converges and if the filtering gains produce stable estimates. From the

previous section we note that the optimal infinite horizon cost can be written as

J̄∗∞ = lim
k→∞

N∑

i=1

tr(Q∗i (k)),

where the dynamics ofQi(k)∗ is given by

Q∗i (k+1)=
N∑

j=1

pi j

[

AQ∗j (k)A′ +Σw−AQ∗j (k)C′j
(

Σv j +C jQ
∗
j (k)C′j

)−1
C jQ

∗
j (k)A′

]

, (5.28)

and the optimal filtering gains are given by

L∗i (k) = AQ∗i (k)C′i
[

Σvi +CiQ
∗
i (k)C′i

]−1
,

for i = 1. . .N. Assuming that (5.28), converges, the optimal value of the cost J̄∗∞ is given

by

J̄∗∞ =
N∑

i=1

tr(Q̄i),

where{Q̄i}Ni=1 satisfy

Q̄i =

N∑

j=1

pi j

[

AQ̄ jA
′+Σw−AQ̄ jC

′
j(Σv j +C jQ̄ jC

′
j)
−1C jQ̄ jA

′] . (5.29)

Sufficient conditions under which there exists a unique solutionof (5.29) are provided by

Proposition A.2.1, which says that if (p,L ,A) is detectable and (A,Σ1/2
v ,p) is stabilizable

in the sense of Definitions A.1.1 and A.1.2, respectively, then there is a unique solution

of (5.29) and limk→∞Q∗i (k) = Q̄i .
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Mimicking Theorem A.12 of [11], it can be shown that a numerical approach to

solve (5.29) (if it has a solution) can be obtained by (numerically) solving the following

convex programming optimization problem

max tr
(∑N

i=1 Qi

)

(5.30)





−Qi +
∑N

j=1 pi j AQjA′+Σw
√

pi1C1Q1A′ . . .
√

pi1CNQNA′

√
pi1AQ1C′1 Σv1 +C1Q1C′1 . . . 0

...
...

. . .
...

√
piNAQNC′N 0 . . . ΣvN +CNQNC′N





� 0

Qi � 0, i = 1. . .N.

5.5 Connection with Markovian Jump Linear System state estimation

In this section we present a connection between the detectability of (5.2) in the

sense of Definition 5.2.1 and the detectability property of aMJLS, which is defined in

what follows. We also show that the optimal gains of a linear filter for the state estimation

of the aforementioned MJLS can be used to approximate the solution of the optimization

problem (5.11), which gives the optimal CBDLF. We assume that the matrixP(k) describ-

ing the communication topology of the sensors isirreducibleanddoubly stochasticand

we assume, without loss of generality, that the matrices{Ci(k),k ≥ 0}Ni=1 in the sensing

model (5.3), have the same dimensions. We define the following Markovian jump linear
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system

ξ(k+1)= Ãθ(k)(k)ξ(k)+ B̃θ(k)(k)w̃(k)

z(k) = C̃θ(k)(k)ξ(k)+ D̃θ(k)(k)ṽ(k), ξ(0)= ξ0,

(5.31)

whereξ(k) is the state,z(k) is the output,θ(k) ∈ {1, . . . ,N} is a Markov chain with prob-

ability transition matrixP(k)′, w̃(k) andṽ(k) are independent Gaussian random variables

with zero mean and identity covariance matrices. Also,ξ0 is a Gaussian noise with mean

µ0 and covariance matrixΣ0. We denote byπi(k) the probability distribution ofθ(k)

(Pr(θ(k) = i) = πi(k)) and we assume thatπi(0) > 0. We have thatÃθ(k)(k) ∈ {Ãi(k)}Ni=1,

B̃θ(k)(k) ∈ {B̃i(k)}Ni=1, C̃θ(k)(k) ∈ {C̃i(k)}Ni=1 andD̃θ(k)(k) ∈ {D̃i(k)}Ni=1, where the indexi refers

to the statei of θ(k). We set

Ãi(k) = A(k), B̃i(k) =
√
πi(0)√
πi (k)
Σ

1/2
w (k),

C̃i(k) = 1√
πi(0)

Ci(k), D̃i(k) = 1√
πi(k)
Σ

1/2
vi

(k),

(5.32)

for all i,k ≥ 0 (note that sinceP(k) is assumed doubly stochastic and irreducible and

πi(0) > 0, we have thatπi(k) > 0 for all i,k ≥ 0). In addition,ξ0, θ(k), w̃(k) and ṽ(k)

are assumed independent for allk ≥ 0. The random processθ(k) is also calledmode.

Assuming that the mode is directly observed, a linear filter for the state estimation is

given by

ξ̂(k+1)= Ãθ(k)(k)ξ̂(k)+Mθ(k)(k)(z(k)− C̃θ(k)(k)ξ̂(k)), (5.33)

where we assume that the filter gainMθ(k) depends only on the current mode. The dy-

namics of the estimation errore(k) , ξ(k)− ξ̂(k) is given by

e(k+1)=
(

Ãθk(k)−Mθ(k)(k)C̃θ(k)(k)
)

e(k)+

+B̃θ(k)(k)w(k)−Mθ(k)(k)D̃θ(k)(k)v(k).

(5.34)
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Let µ(k) andY(k) denote the mean and the covariance matrix ofe(k), i.e. µ(k) ,

E[e(k)] andY(k) , E[e(k)e(k)′], respectively. We define also the mean and the covariance

matrix of e(k), when the system is in modei, i.e. µi(k) , E[e(k)1{θ(k)=i}] and Yi(k) ,

E[e(k)e(k)′1{θ(k)=i}], where1{θ(k)=i} is the indicator function. It follows immediately that

µ(k) =
∑N

i=1µi(k) andY(k) =
∑N

i=1Yi(k).

Definition 5.5.1. The optimal linear filter (5.33) is obtain by minimizing the following

quadratic finite horizon cost function

J̃K(M(·)) =
K∑

k=1

tr(Y(k)) =
K∑

k=1

N∑

i=1

tr(Yi(k)), (5.35)

whereM (·) , {Mi(k),k = 0. . .K −1}Ni=1 are the filter gains and whereMi(k) corre-

sponds toMθ(k)(k) whenθ(k) is in modei. We can give a similar definition for an optimal

steady state filter using the infinite horizon quadratic costfunction.

Definition 5.5.2. Assume that the matrices̃Ai(k), C̃i(k) and P(k) are constant for all k≥ 0.

We say that the Markovian jump linear system (5.31) is mean square detectable if there

exits {Mi}Ni=1 such thatlimk→∞E[‖e(k)‖2] = 0, when the noises̃w(k) and ṽ(k) are set to

zero.

The next result makes the connection between the detectability of the MJLS defined

above and the distributed detectability of the process (5.2).

Proposition 5.5.1.If the Markovian jump linear system (5.31) is mean square detectable,

then the linear stochastic system (5.2)-(5.3) is detectable in the sense of Definition 5.2.1.

Proof. In the context of this proposition, the dynamics of the estimation error for the
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MJLS (5.31) becomes

e(k+1)= (A−Mθ(k)C̃θ(k))e(k), e(0)= e0,

whereC̃i = Ci . It is not difficult to check that the dynamic equations for the covariance

matrices{Yi(k)}Ni=1 and the mean vectors{µi(k)}Ni=1 are given by

Yi(k+1)=
N∑

j=1

pi j (A−M j
1

√
πi(0)

C j)Yj(k)(A−M j
1

√
πi(0)

C j)
′, (5.36)

with Yi(0)= Y0
i and

µi(k+1)=
N∑

j=1

pi j (A−M j
1

√
πi(0)

C j)µ j(k),µi(0)= µ0
i , (5.37)

for i = 1. . .N. Since the MJLS is assumed mean square detectable it followsthat there

exists a set of matrices{Mi}Ni=1 such that (5.36) is asymptotically stable. But this also

implies (see for instance Proposition 3.6 of [11]) that (5.37) is asymptotically stable as

well. SettingLi = πi(0)Mi , we see that (5.37) is identical to equation (5.7) and therefore

(5.7) is asymptotically stable (when ignoring the noise). Hence, (5.2) is detectable in the

sense of Definition 5.2.1. �

The next result establishes that the optimal gains of the filter (5.33) can be used to

approximate the solution of the optimzation problem (5.11).

Proposition 5.5.2. Let M∗(·) , {M∗i (k),k = 0, . . . ,K − 1}Ni=1 be the optimal gains of the

linear filter (5.33). If we set Li(k) = 1√
πi(0)

M∗i (k) as filtering gains in the CBDLF scheme,

then the filter cost function (5.10) is guaranteed to be upperbounded by

JK(L(·)) ≤
K∑

k=0

N∑

i=1

1
πi(0)

tr(Y∗i (k)), (5.38)

where Y∗i (k) are the covariance matrices resulting from minimizing (5.35).
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Proof. By Theorem 5.5 of [11], the filtering gains that minimize (5.35) are given by

M∗i (k) = Ãi(k)Y∗i (k)C̃i(k)′
[

πi(k)D̃ j(k)D̃ j(k)′ + C̃i(k)Y∗i (k)C̃i(k)′
]−1

, (5.39)

for i = 1. . .N, whereY∗i (k) satisfies

Y∗i (k+1)=
∑N

j=1 pi j (k)
[

Ã j(k)Y∗j (k)Ã j(k)′+π j(k)B̃ j(k)B̃ j(k)′−

−Ã j(k)Y∗j (k)C̃ j(k)′
(

π j(k)D̃ j(k)D̃ j(k)′+ C̃ j(k)Y∗j (k)C̃ j(k)′
)−1

C̃ j(k)Y∗j (k)Ã j(k)′
]

.

(5.40)

In what follows we will show by induction thatY∗i (k) = πi(0)Q∗i (k) for all i,k≥ 0, where

Q∗i (k) satisfies (5.26). Fork = 0 we haveY∗i (0)= πi(0)Y∗(0)= πi(0)Σ0 = πi(0)Q∗i (0). Let

us assume thatY∗i (k) = πi(0)Q∗i (k). Then, from (5.32) we have

π j(k)B̃ j(k)B̃ j(k)′ = πi(0)Σw(k), π j(k)D̃ j(k)D̃ j(k)′ = Σvi (k),

π j(k)D̃ j(k)D̃ j(k)′+ C̃ j(k)Y∗j (k)C̃ j(k)′ = Σv j (k)+C j(k)Q∗j (k)C j(k)′.
(5.41)

Also,

M∗i (k) = πi(0)A(k)Q∗i (k)Ci(k)′
[

Σv j (k)+C j(k)Q∗j (k)C j(k)′
]−1

, (5.42)

and from (5.25) we get thatM∗i (k) =
√
πi(0)L∗i (k). From (5.40) and (5.41) it can be easily

argued thatY∗i (k+1)= πi(0)Q∗i (k+1). By Corollary 5.4.1 we have that

JK(L (·)) ≤ J̄K(L (·)),

for any set of filtering gainsL (·) and in particular forLi(k) = 1
πi(0)M

∗
i (k) = L∗i (k), for all i

andk. But since

J̄K(L ∗(·)) =
K∑

k=0

N∑

i=1

1
πi(0)

Y∗i (k),

the result follows.

�
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Chapter 6

Conclusions

In Chapter 2 we studied a multi-agent subgradient method under random communi-

cation topology. Under an i.i.d. assumption on the random process governing the evolu-

tion of the topology, we derived upper bounds on two performance metrics related to the

CBMASM. The first metric reflects how close each agent can get to the optimal value. The

second metric reflects how close and fast the agents’ estimates of the decision vector can

get to the minimizer of the objective function, and it was analyzed for a particular class of

convex functions. All the aforementioned performance measures were expressed in terms

of the probability distribution of the random communication topology. In addition we

showed how the distributed optimization algorithm can be used to perform collaborative

system identification, application which can be useful in collaborative tracking

In Chapter 3 we emphasized the importance of the convexity concept and in par-

ticular the importance of the convex hull notion for reaching consensus. We did this

by generalizing the asymptotic consensus problem to the case of convex metric spaces.

For a group of agents taking values in a convex metric space, we introduced an itera-

tive algorithm which ensures asymptotic convergence to agreement under some minimal

assumptions for the communication graph. As an application, we provided an iterative

algorithm which guarantees convergence to consensus of opinion.

In Chapter 4 we analyzed the convergence properties of the linear consensus prob-
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lem, when the communication topology is modeled as a directed random graph with an

underlying Markovian process. We addressed both the cases where the dynamics of the

agents are expressed in continuous and discrete time. Undersome assumptions on the

communication topologies, we provided a rigorous mathematical proof for the intuitive

necessary and sufficient conditions for reaching average consensus in the meansquare

and almost sure sense. These conditions are expressed in terms of connectivity proper-

ties of the union of graphs corresponding to the states of theMarkov process. The aim

of this work has been to show how mathematical techniques from the stability theory of

the Markovian jump systems, in conjunction with results from the matrix and graph the-

ory can be used to prove convergence results for consensus problems under a stochastic

framework.

In Chapter 5 we first provided (testable) sufficient conditions under which stable

consensus-based distributed linear filters can be obtained. Second, we gave a sub-optimal,

linear filtering scheme, which can be implemented in a distributed manner and is valid

for time varying communication topologies as well, and which guarantees a quantifiable

level of performance. Third, under the assumption that the stochastic matrix used in the

consensus step is doubly stochastic we showed that if an appropriately defined Markovian

jump linear system is detectable, then the stochastic process of our interest is detectable

as well. We also showed that the optimal gains of the consensus-based distributed linear

filter scheme can be approximated by using the optimal linearfilter for the state estimation

of a particular Markovian jump linear system.

As future directions, an immediate extension of the resultsof Chapter 2 is the gener-

alization of the convergence analysis to case where the communication topology is mod-
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eled by a Markovian random graph. The results introduced in Chapter 4 provide the

appropriate framework to this end. In Chapter 5 we proposed adistributed algorithm for

the state estimation of a process observed by a network of sensors. When considering

wireless networks, another relevant problem is designing network architectures aimed at

ensuring good estimation performance and network longevity. The problem increases in

complexity if we impose the solution to be obtained in a distributed manner. Due to the

communication costs inherent to a wireless network, the network architecture should be

a result of a tradeoff between the need for rich communication neighborhoods for obtain-

ing accurate and stable estimates and the need for small communication neighborhoods

for energy conservation. Our approach will consist in formulating the network architec-

ture design problem as a constraint optimization problem which is solved in a distributed

manner by the sensors. The main cost should reflect the relevance of the sensor measure-

ments for the estimation process, while the constraints should reflect the limited energy

available for communication and the need to ensure rich enough local neighborhoods for

computing the state estimates.

As we showed in Chapters 2 and 5, the consensus problem represents a tool for

localizing algorithms in distributed computing. Important optimization problems go be-

yond the realm ofRn. For example, as we have mentioned in the introduction chapter,the

trusted routing problem is formulated on theMax-plus semiring, while the design of net-

work topology can be formulated on aHamming space. We plan to continue the analysis

started in Chapter 3, and formulate the consensus problem onsemirings, and in particular

on theMax-plusalgebra. One of our goals is to explore the feasibility of using consensus

to localize the algorithms used for solving optimization problems on spaces where the
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operations and relations are described by theMax-plusalgebra, for example. A simple

model for a graph link is obtained by assigning to the link a boolean value. By stacking

all possible links, we obtain a vector whose entries can takezero/one values (correspond-

ing to the existence or non-existence of links), and which lives in a Hamming space.

As we have previously commented, designing communication topologies is an important

problem in distributed optimization, estimation and control applications, in particular in

the case of wireless networks for which usually the resources are scarce. Another goal

of ours is to study the possibility of using the consensus problem formulated on Ham-

ming spaces for solving distributed optimization problemswhose result should provide

a network architecture, specifically designed for a particular task, such as estimation or

optimization.
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Appendix A

Discrete-Time Coupled Matrix Equations

A.1 Properties of a special class of difference matrix equations

Given a positive integerN, a sequence of positive numbersp = {pi j }Ni, j=1 and a set

of matricesF = {Fi}Ni=1, we consider the following matrix difference equations

Wi(k+1)=
N∑

j=1

pi j F jWj(k)F′j , Wi(0)=W0
i , i = 1. . .N. (A.1)

Additionally, consider a similar set of matrix difference equations

Wi(k+1)=
N∑

j=1

p ji F
′
jWj(k)F j , Wi(0)=W0

i , i = 1. . .N. (A.2)

Proposition A.1.1. [9] The dynamics (A.1)are asymptotically stable if and onlyif the

dynamics (A.2) are asymptotically stable.

Related to the above dynamic equations, we introduce the following stabilizability

and detectability definitions.

Definition A.1.1. [10] Given a set of matricesC = {Ci}Ni=1, we say that(p,L,A) is de-

tectable if there exists a set of matricesL = {Li}Ni=1 such that the dynamics (A.1) is asymp-

totically stable, where Fi = Ai −LiCi , for i = 1. . .N.

Definition A.1.2. [10] Given a set of matricesC = {Ci}Ni=1, we say that(A,L,p) is stabi-

lizable, if there exists a set of matricesL = {Li}Ni=1 such that the dynamics (A.1) is asymp-

totically stable, where Fi = Ai −CiLi , for i = 1. . .N.
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Remark A.1.1. Given a semipositive definite matrix X and a positive definitematrix Y,

the following holds:

min
i=1,...,n

λi(Y)tr(X) ≤ tr(YX) ≤ max
i=1,...,n

λi(Y)tr(X)

Proposition A.1.2. If there exists a set of symmetric positive definite matrices{Vi}Ni=1 such

that

Vi =

N∑

j=1

p ji F
′
i V jFi +Si , (A.3)

for some set of symmetric positive definite matrices{Si}Ni=1, then the dynamics (A.1) are

asymptotically stable.

Proof. We use the same idea as in the proof of Theorem 3.19 of [11] and define the

following Lyapunov function

Φ(k) =
N∑

i=1

tr(Wi(k)Vi).

In the following we show that the differenceΦ(k+1)−Φ(k) is negative for allk≥ 0, from

which we infer the asymptotic stability of (A.1). We get that

Φ(k+1)−Φ(k) = tr





N∑

i=1





N∑

j=1

pi j F jWj(k)F′j




Vi −Wi(k)Vi




=

= tr





N∑

i=1

Wi(k)





N∑

j=1

p ji FiV j(k)F′i −Vi








=

N∑

i=1

tr(Wi(k)Si).

Since{Wi(k)}Ni=1 are positive semi-definite matrices fork≥ 0 and{Si}Ni=1 are positive defi-

nite, by Remark A.1.1, it follows that

Φ(k+1)−Φ(k) < 0, k≥ 0.

�
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Proposition A.1.3. If there exists a set of symmetric positive definite matrices{Vi}Ni=1 such

that

Vi =

N∑

j=1

pi j F
′
i V jFi +Si , (A.4)

for some set of symmetric positive definite matrices{Si}Ni=1, then the dynamics (A.1) are

asymptotically stable.

Proof. Using the same approach as in the previous proposition, we prove the asymptotic

stability of the dynamics (A.2). Using Proposition A.1.1, the result follows. �

Proposition A.1.4. If the following linear matrix inequalities are feasible





Xi
√

p1iXiFi
√

p2iF′i Xi · · ·
√

pNiF′i Xi

√
p1iXiFi X1 0 · · · 0

√
p2iXiFi 0 X2 · · · 0

...
...

...
. . .

...

√
pNiXiFi 0 0 · · · XN





� 0, (A.5)

for i = 1. . .N, where{Xi}Ni=1 are the unknown variables, then the dynamics (A.1) are

asymptotically stable.

Proof. By the Schur complement lemma, (A.5) are feasible if and onlyif

Xi −
N∑

j=1

p ji XiFiX
−1
j F′i Xi � 0, Xi � 0, i = 1. . .N. (A.6)

By definingVi , X−1
i , i = 1. . .N, (A.6), becomes

Vi −
N∑

j=1

p ji FiV jF
′
i � 0, Vi � 0, i = 1. . .N.

By Proposition A.1.2, (A.1) is asymptotically stable. �
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Inspired by Proposition A.1.4, detectability and stabilizability tests, in the sense of

Definitions A.1.1 and A.1.2, respectively, can be formulated in terms of the feasibility of

a set of linear matrix inequalities.

Proposition A.1.5(detectability test). If the following matrix inequalities are feasible





Xi
√

pi1(XiAi −YiCi)
√

pi2(XiAi −YiCi) · · ·
√

piN(XiAi −YiCi)

√
pi1(XiAi −YiCi)′ X1 0 · · · 0

√
pi2(XiAi −YiCi)′ 0 X2 · · · 0

...
...

...
. . .

...

√
piN(XiAi −YiCi)′ 0 0 · · · XN





� 0,

(A.7)

for i = 1. . .N, where{Xi}Ni=1 and {Yi}Ni=1 are the unknown variables, then(p,L,A) is de-

tectable in the sense of Definition A.1.1. Moreover chosing Li = X−1
i Yi , for i = 1. . .N, the

dynamics (A.1) are asymptotically stable.

Proof. By the Schur complement lemma, (A.7) are feasible if and onlyif

Xi −
N∑

j=1

pi j (XiAi −YiCi)X
−1
j (XiAi −YiCi)

′ � 0, Xi � 0, i = 1. . .N. (A.8)

By definingLi , X−1
i Yi andVi , X−1

i , i = 1. . .N, (A.8), becomes

Vi −
N∑

j=1

pi j FiV jF
′
i � 0, Vi � 0, i = 1. . .N.

By Proposition A.1.3, (p,L ,A) is detectable in the sense of Definition A.1.1. �
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Proposition A.1.6(stabilizability test). If the following matrix inequalities are feasible




Xi
√

p1i(XiAi −CiYi)′
√

p2i(XiAi −CiYi)′ · · ·
√

pNi((XiAi −CiYi)′

√
p1i(XiAi −CiYi) X1 0 · · · 0

√
p2i(XiAi −CiYi) 0 X2 · · · 0

...
...

...
. . .

...

√
pNi(XiAi −CiYi) 0 0 · · · XN





� 0,

(A.9)

for i = 1. . .N, where{Xi}Ni=1 and{Yi}Ni=1 are the unknown variables, then(A,L,p) is stabi-

lizable in the sense of Definition A.1.2. Moreover choosing Li = YiX−1
i , for i = 1. . .N, the

dynamics (A.1) are asymptotically stable.

Proof. By the Schur complement lemma, (A.9) are feasible if and onlyif

Xi −
N∑

j=1

p ji (XiAi −YiCi)
′X−1

j (XiAi −YiCi) � 0, Xi � 0, i = 1. . .N. (A.10)

By definingLi , X−1
i Yi andVi , X−1

i , i = 1. . .N, (A.10), becomes

Vi −
N∑

j=1

p ji F
′
i V jFi � 0, Vi � 0, i = 1. . .N.

By Proposition A.1.2, (p,L ,A) is stabilizable in the sense of Definition A.1.2. �

A.2 Discrete-time coupled Riccati equations

Consider the following coupled Riccati difference equations

Qi(k+1)=
N∑

i=1

pi j

(

A jQ j(k)A′j −A jQ j(k)C′j(C jQ j(k)C′j +Σv j )
−1C jQ j(k)A′j +Σw

)

,

(A.11)

Qi(0)=Q0
i � 0, i = 1. . .N, where{Σvi }Ni=1 andΣw are symmetric positive definite matrices.
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Proposition A.2.1. Let Σ1/2
v = {Σ1/2

vi
}Ni=1, whereΣvi = Σ

1/2
vi

′
Σ

1/2
vi

. Suppose that(p,C,A) is

detectable and that(A,Σ1/2
v ,p) is stabilizable in the sense of Definitions A.1.1 and A.1.2,

respectively. Then there exists a unique set of symmetric positive definite matrices̄Q =

{Q̄i}Ni=1 satisfying

Q̄i =

N∑

i=1

pi j

(

A jQ̄ jA
′
j −A jQ̄ jC

′
j(C jQ̄ jC

′
j +Σv j )

−1C jQ̄ jA
′
j +Σw

)

, i = 1. . .N. (A.12)

Moreover, for any initial conditions Q0i � 0, we have thatlimk→∞Qi(k) = Q̄i .

Proof. The proof can be mimicked after the proof of Theorem 1 of [10].Compared to our

case, in Theorem 1 of [10], scalar terms, taking values between zero and one, multiply

the matricesΣv j in (A.12). However it is not difficult to note that the result holds even in

the case where these scalar terms take the value one, which corresponds to our setup.�
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